-2013的绝对值是 . | |
如图,在平面直角坐标系中,点A(,0),B(3,2),C(0,2).动点D以每秒1个单位的速度从点O出发沿OC向终点C运动,同时动点E以每秒2个单位的速度从点A出发沿AB向终点B运动.过点E作EF上AB,交BC于点F,连接DA、DF.设运动时间为t秒. (1)求∠ABC的度数; (2)当t为何值时,AB∥DF; (3)设四边形AEFD的面积为S.①求S关于t的函数关系式; ②若一抛物线y=-x2+mx经过动点E,当S<2时,求m的取值范围(写出答案即可). |
|
如图,⊙O表示一圆形纸板,根据要求,需通过多次剪裁,把它剪成若干个扇形面.操作过程如下:第1次剪裁,将圆形纸板等分为4个扇形;第2次剪裁,将上次得到的扇形面中的一个再等分成4个扇形;以后按第2次剪裁的作法进行下去. (1)请你在⊙O中,用尺规作出第2次剪裁后得到的7个扇形(保留痕迹,不写作法) (2)请你通过操作和猜想,将第3、第4和第n次裁剪后所得扇形的总个数(s)填入下表.
|
|||||||||||||||
我县绿色和特色农产品在国际市场上颇具竞争力.外贸商胡经理按市场价格10元/千克在我县收购了6000千克蘑菇存放入冷库中.请根据胡经理提供的预测信息(如图)帮胡经理解决以下问题: (1)若胡经理想将这批蘑菇存放x天后一次性出售,则x天后这批蘑菇的销售单价为______元,这批蘑菇的销售量是______千克; (2)胡经理将这批蘑菇存放多少天后,一次性出售所得的销售总金额为100000元;(销售总金额=销售单价×销售量). (3)将这批蘑菇存放多少天后一次性出售可获得最大利润?最大利润是多少? |
|
如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG. (1)连接GD,求证:△ADG≌△ABE; (2)连接FC,观察并猜测∠FCN的度数,并说明理由; (3)如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=a,BC=b(a、b为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变?若∠FCN的大小不变,请用含a、b的代数式表示tan∠FCN的值;若∠FCN的大小发生改变,请举例说明. |
|
某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖纸盒______. (1)现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共100个,设做竖式纸盒x个. ①根据题意,完成以下表格:
(2)若有正方形纸162张,长方形纸板a张,做成上述两种纸盒,纸板恰好用完.已知290<a<306.求a的值. |
||||||||||||
马垅中学有一腾飞小广场,广场中间的石雕上有两只海豚,小明一直想知道它的高度,学了第二十八章《解直角三角形》后,他决定去估测这个建筑的高度.他首先站在A处,测得海豚顶部C的仰角∠CEG=21°,然后他往石雕的方向前进10米到达B处,此时测得仰角∠CFG=37°,已知小明的身高1.5米,请你根据以上的数据帮小明算出该石雕CD的高度(参考数据:sin37°≈,tan37°≈,sin21°≈,tan21°≈). |
|
在学习“轴对称现象”内容时,王老师让同学们寻找身边的轴对称图形,小明有一副三角尺和一个量角器(如图所示). (1)小明的这三件文具中,可以看做是轴对称图形的是______(填字母代号); (2)小红也有同样的一副三角尺和一个量角器.若他们分别从自己这三件文具中随机取出一件,则可以拼成一个轴对称图案的概率是多少? |
|
为应对全球经济危机,中国政府投资40000亿元人民币以拉动内需,5月21日国家发改委公布了40000亿元投资构成,具体内容如下:单位:亿元
(1)在统计表中,投向“铁路等重大基础设施建设和城市电网改造”的资金测算是 亿元,投向“汶川地震灾后恢复重建”的资金测算是 亿元; (2)在扇形统计图中,“卫生、教育等社会事业发展”部分所占的百分数是 ,“节能减排和生态建设工程”部分所占的百分数是 ; (3)统计表“资金测算”栏目下的七个数据中,中位数是 亿元,众数是 亿元; (4)在扇形统计图中,“廉租住房等保障性住房”部分所占的圆心角为 度. |
|||||||||||||||||
(1)化简(1+)÷ (2)解分式方程:. |
|