如图,PA、PB分别与⊙O相切于点A、B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N. (1)求证:OM=AN; (2)若⊙O的半径R=3,PA=9,求OM的长. |
|
如图,小明想用所学的知识来测量湖心岛上的迎宾槐与湖岸上凉亭间的距离,他先在湖岸上的凉亭A处测得湖心岛上的迎宾槐C处位于北偏东65°方向,然后,他从凉亭A处沿湖岸向东方向走了100米到B处,测得湖心岛上的迎宾槐C处位于北偏东45°方向(点A、B、C在同一平面上),请你利用小明测得的相关数据,求湖心岛上的迎宾槐C处与湖岸上的凉亭A处之间的距离(结果精确到1米).(参考数据sin25°≈0.4226,cos25°≈0.9063,tan25°≈0.4663,sin65°≈0.5563,cos65°≈0.4226,tan65°≈2.1445) |
|
某校为了满足学生借阅图书的需求,计划购买一批新书.为此,该校图书管理员对一周内本校学生从图书馆借出各类图书的数量进行了统计.结果如图: 请你根据统计图中的信息,解答下列问题: (1)补全条形统计图和扇形统计图; (2)该校学生最喜欢借阅哪类图书? (3)该校计划购买新书共600本,若按扇形统计图中的百分比来相应的确定漫画、科普、文学、其它这四类图书的购买量,求应购买这四类图书各多少本? |
|
如图,在▱ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F. (1)求证:AB=AF; (2)当AB=3,BC=5时,求的值. |
|
小峰和小轩用两枚质地均匀的骰子做游戏,规则如下:每人随机掷两枚骰子一次(若掷出的两枚骰子摞在一起,则重掷),点数和大的获胜;点数和相同为平局.小峰先随机掷两枚骰子一次,点数和是7,求小轩随机掷两枚骰子一次,胜小峰的概率. |
|
化简:. |
|
解不等式组:. |
|
如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是 . |
|
已知两圆的半径分别为1和3.若两圆相切,则两圆的圆心距为 . | |
下列数据5,3,6,7,6,3,3,4,7,3,6的众数是 . | |