如图,AB是半圆O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连接BC. (1)求证:BC平分∠PDB; (2)求证:BC2=AB•BD; (3)若PA=6,PC=6 ,求BD的长.
|
|
|
|
在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx-3k+4与⊙O交于B、C两点,则弦BC的长的最小值为 .
|
|
|
如图,已知直线l:y= x,过点M(2,0)作x轴的垂线交直线l于点N,过点N作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,…;按此作法继续下去,则点M10的坐标为 .
|
|
|
如图,正六边形硬纸片ABCDEF在桌面上由图1的起始位置沿直线l不滑行地翻滚一周后到图2位置,若正六边形的边长为2cm,则正六边形的中心O运动的路程为 cm.
|
|
|
在△ABC中,已知∠C=90°,sinA+sinB= ,则sinA-sinB= .
|
|
|
某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路.如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120,具有一次函数的关系,如下表所示. (1)求y关于x的函数解析式; (2)后来在修建的过程中计划发生改变,政府决定多修2千米,因此在没有增减建设力量的情况下,修完这条路比计划晚了15天,求原计划每天的修建费.
|
|
|
如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为3米,台阶AC的坡度为1: (即AB:BC=1: ),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(侧倾器的高度忽略不计).
|
|
|
随着车辆的增加,交通违规的现象越来越严重,交警对某雷达测速区检测到的一组汽车的时速数据进行整理,得到其频数及频率如表(未完成):
| 数据段 | 频数 | 频率 | | 30-40 | 10 | 0.05 | | 40-50 | 36 | ______ | | 50-60 | ______ | 0.39 | | 60-70 | ______ | ______ | | 70-80 | 20 | 0.10 | | 总计 | 200 | 1 | (1)请你把表中的数据填写完整; (2)补全频数分布直方图; (3)如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?
|
|
|
已知,如图,△ABC和△ECD都是等腰直角三角形,∠ACD=∠DCE=90°,D为AB边上一点.求证:BD=AE.
|
|
|
计算: .
|
|
|