在平面中,下列命题为真命题的是( ) A.四边相等的四边形是正方形 B.对角线相等的四边形是菱形 C.四个角相等的四边形是矩形 D.对角线互相垂直的四边形是平行四边形 |
|
下列计算正确的是( ) A.2a+3b=5ab B.2x•3xy=6x2y C.(ab3)2=ab6 D.(x+2)2=x2+4 |
|
用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是( ) A. B. C. D. |
|
2013年广西壮族自治区财政将进一步调整支出结构,筹措资金184亿元用于实施社保惠民、健康惠民工程项目,比2012年增长17.2%.将18 400 000 000用科学记数法表示为( ) A.18.4×109 B.1.84×109 C.1.84×1010 D.1.84×1011 |
|
下列四个角中,最有可能与70°角互补的是( ) A. B. C. D. |
|
4的平方根是( ) A.2 B.±2 C.16 D.±16 |
|
如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(6,0),(6,8).动点M、N分别从O、B同时出发,以每秒1个单位的速度运动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点N作NP⊥BC,交AC于P,连接MP.已知动点运动了x秒. (1)P点的坐标为多少;(用含x的代数式表示) (2)试求△MPA面积的最大值,并求此时x的值; (3)请你探索:当x为何值时,△MPA是一个等腰三角形?你发现了几种情况?写出你的研究成果. |
|
为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨,、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨. (1)求这批赈灾物资运往D、E两县的数量各是多少? (2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案; (3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:
|
|||||||||||||
一个商标图案如图,矩形ABCD中,AB=2BC,且AB=8cm,以A为圆心,AD长为半径作半圆,求商标图案的面积. |
|
如图,某体育馆入口处原有三阶台阶,每级台阶高为20cm,深为30cm.为了迎接残奥会,方便残疾人士,拟将台阶改为无障碍斜坡,设台阶的起点为A,斜坡的起始点为C,现将斜坡的坡角∠BCA设计为12°,求AC的长度.(结果精确到1cm,其中sin12°=0.2079,cos12°=0.9781,tan12°=0.2126.) |
|