已知:在⊙O中,AB是直径,AC是弦,OE⊥AC于点E,过点C作直线FC,使∠FCA=∠AOE,交AB的延长线于点D. (1)求证:FD是⊙O的切线; (2)设OC与BE相交于点G,若OG=2,求⊙O半径的长; (3)在(2)的条件下,当OE=3时,求图中阴影部分的面积.
|
|
如图,某货船以20海里/时的速度将一批重要物资由A处运往正西方向的B处,经16小时的航行到达,到达后必须立即卸货.此时,接到气象部门通知,一台风中心正以40海里/时的速度由A向北偏西60°方向移动,距台风中心200海里的圆形区域(包括边界)均会受到影响. (1)问:B处是否会受到台风的影响?请说明理由. (2)为避免受到台风的影响,该船应在多少小时内卸完货物? (供选用数据:≈1.4,≈1.7)
|
|
某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?
|
|
先化简,后求值:,其中.
|
|
如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论: ①S1+S2=S3+S4;②S2+S4=S1+S3;③若S3=2S1,则S4=2S2;④若S1=S2,则P点在矩形的对角线上. 其中正确的结论的序号是 (把所有正确结论的序号都填在横线上).
|
|
若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值范围是 .
|
|
如图所示的圆面图案是用相同半径的圆与圆弧构成的.若向圆面投掷飞镖,则飞镖落在黑色区域的概率为 .
|
|
已知α,β是关于x的一元二次方程(m-1)x2-x+1=0两个实根,且满足(α+1)(β+1)=m+1,则m的值为 .
|
|
已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,则线段AC= cm.
|
|