如图,已知平面直角坐标系xOy中,点A(m,6),B(n,1)为两动点,其中0<m<3,连接OA,OB,OA⊥OB. (1)求证:mn=-6; (2)当S△AOB=10时,抛物线经过A,B两点且以y轴为对称轴,求抛物线对应的二次函数的关系式; (3)在(2)的条件下,设直线AB交y轴于点F,过点F作直线l交抛物线于P,Q两点,问是否存在直线l,使S△POF:S△QOF=1:3?若存在,求出直线l对应的函数关系式;若不存在,请说明理由. |
|
如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2,∠DPA=45°. (1)求⊙O的半径; (2)求图中阴影部分的面积. |
|
类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用实数加法表示为3+(-2)=1. 若坐标平面上的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”;“平移量”{a,b}与“平移量”{c,d}的加法运算法则为{a,b}+{c,d}={a+c,b+d}. 解决问题: (1)计算:{3,1}+{1,2};{1,2}+{3,1}; (2)①动点P从坐标原点O出发,先按照“平移量”{3,1}平移到A,再按照“平移量” {1,2}平移到B;若先把动点P按照“平移量”{1,2}平移到C,再按照“平移量” {3,1}平移,最后的位置还是点B吗?在图1中画出四边形OABC. ②证明四边形OABC是平行四边形. (3)如图2,一艘船从码头O出发,先航行到湖心岛码头P(2,3),再从码头P航行到码头Q(5,5),最后回到出发点O.请用“平移量”加法算式表示它的航行过程. |
|
如图,一次函数y=kx+4的图象与反比例函数的图象交于点P、Q,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,OC=OA. (1)求点D的坐标; (2)求一次函数与反比例函数的解析式; (3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围. |
|
某电器经营业主计划购进一批同种型号的挂式空调和电风扇,若购进8台空调和20台电风扇,需要资金17400元,若购进10台空调和30台电风扇,需要资金22500元. (1)求挂式空调和电风扇每台的采购价各是多少元? (2)该经营业主计划购进这两种电器共70台,而可用于购买这两种电器的资金不超过30000元,根据市场行情,销售一台这样的空调可获利200元,销售一台这样的电风扇可获利30元.该业主希望当这两种电器销售完时,所获得的利润不少于3500元. ①试问该经营业主有哪几种进货方案? ②设该业主计划购进空调t台,这两种电器销售完后,所获得的利润为W元、求W关于t的函数解析式,并利用函数的性质说明哪种方案获利最大?最大利润是多少? |
|
小莉的爸爸买了去看中国篮球职业联赛总决赛的一张门票,她和哥哥两人都很想去观看,可门票只有一张,读九年级的哥哥想了一个办法,拿了八张扑克牌,将数字为1,2,3,5的四张牌给小莉,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥去. (1)请用列表的方法求小莉去看中国篮球职业联赛总决赛的概率; (2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则. |
|
如图,在△ABC中,D是BC边上一点,E是AC边上一点,且满足AD=AB,∠ADE=∠C. (1)求证:∠AED=∠ADC,∠DEC=∠B; (2)求证:AB2=AE•AC. |
|
求不等式组的最大整数解. |
|
计算: (1) (2). |
|
如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是弧上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C. ①求∠ACB的度数为 ; ②记△ABC的面积为S,若=4,则⊙D的半径为 . |
|