下列计算正确的是( ) A.a+2a=3a2 B.a2•a3=a5 C.a3÷a=3 D.(-a)3=a3 |
|
可化简为( ) A.3.2-π B.π-3.2 C.π+3.2 D.-π-3.2 |
|
如图,在平面直角坐标系中,顶点为(4,-1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3). (1)求此抛物线的解析式 (2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明; (3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积. |
|
已知:如图,O正方形ABCD的中心,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G,连接OG. (1)求证:△BCE≌△DCF; (2)OG与BF有什么数量关系?证明你的结论; (3)若GE•GB=4-2,求正方形ABCD的面积. |
|
甲、乙两超市(大型商场)同时开业,为了吸引顾客,都举行有奖酬宾活动:凡购物满100元,均可得到一次摸奖的机会.在一个纸盒里装有2个红球和2个白球,除颜色外其它都相同,摸奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少.(如下表) 甲超市:
(2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由. |
|||||||||||||||||
如图:AB是⊙O的直径,AD是弦,∠DAB=22.5°,延长AB到点C,使得∠ACD=45°. (1)求证:CD是⊙O的切线; (2)若AB=2,求BC的长. |
|
已知关于x的方程k2x2-2(k+1)x+1=0有两个实数根. (1)求k的取值范围; (2)当k=1时,设所给方程的两个根分别为x1和x2,求+的值. |
|
张军同学9点50分离开家去赶11点整的火车,已知他家离火车站10千米,到火车站后,进站、检票等事项共需20分钟,他离开家后以3千米/小时的速度走了1千米,然后乘公共汽车去火车站,问公共汽车平均每小时至少行驶多少千米才能不误当次火车? |
|
已知:如图,反比例函数的图象经过点A、B,点A的坐标为(1,3),点B的纵坐标为1,点C的坐标为(2,0). (1)求该反比例函数的解析式; (2)求直线BC的解析式. |
|
已知,如图:△ABC是等腰直角三角形,∠ABC=90°,AB=10,D为△ABC外一点,连接AD、BD,过D作DH⊥AB,垂足为H,交AC于E. (1)若△ABD是等边三角形,求DE的长; (2)若BD=AB,且tan∠HDB=,求DE的长. |
|