如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒. (1)求直线AB的解析式; (2)当t为何值时,△APQ与△AOB相似? (3)当t为何值时,△APQ的面积为个平方单位? |
|
甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会和,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C处与乙船相遇.假设乙船的速度和航向保持不变,求: (1)港口A与小岛C之间的距离; (2)甲轮船后来的速度. |
|
某射击运动员在一次比赛中,前6次射击已经得到52环,该项目的记录是89环(10次射击,每次射击环数只取1~10中的正整数). (1)如果他要打破记录,第7次射击不能少于多少环? (2)如果他第7次射击成绩为8环,那么最后3次射击中要有几次命中10环才能打破记录? (3)如果他第7次射击成绩为10环,那么最后3次射击中是否必须至少有一次命中10环才有可能打破记录? |
|
下面的表格是李刚同学一学期数学成绩的记录,根据表格提供的信息回答下面的问题
(2)李刚同学6次成绩的中位数是______. (3)李刚同学平时成绩的平均数是______. (4)如果用下图的权重给李刚打分,他应该得多少分?(满分100分,写出解题过程) |
|||||||||||||||||||
(1)顺次连接菱形的四条边的中点,得到的四边形是______. (2)顺次连接矩形的四条边的中点,得到的四边形是______. (3)顺次连接正方形的四条边的中点,得到的四边形是______. (4)小青说:顺次连接一个四边形的各边的中点,得到的一个四边形如果是正方形,那么原来的四边形一定是正方形,这句话对吗?请说明理由. |
|
已知:如图,梯形ABCD中,AB∥CD,E是BC的中点,直线AE交DC的延长线于点F. (1)求证:△ABE≌△FCE; (2)若BC⊥AB,且BC=16,AB=15,求AF的长. |
|
计算: |
|
计算: |
|
观察下面方程的解法:x4-13x2+36=0.【解析】 原方程可化为(x2-4)(x2-9)=0,∴(x+2)(x-2)(x+3)(x-3)=0,∴x+2=0或x-2=0或x+3=0或x-3=0,∴x1=2,x2=-2,x3=3,x4=-3.请根据此解法求出方程x2-3|x|+2=0的解为 . |
|
如图,矩形ABCD的长AB=6cm,宽AD=3cm.O是AB的中点,OP⊥AB,两半圆的直径分别为AO与OB.抛物线y=ax2经过C、D两点,则图中阴影部分的面积是 cm2. |
|