如图,△ABC内接于⊙O,AD为⊙O的直径,交BC于点E,若DE=2,OE=3,则tanC•tanB=( ) A.2 B.3 C.4 D.5 |
|
四边形ABCD的对角线AC和BD相交于点E,如果△CDE的面积为3,△BCE的面积为4,△AED的面积为6,那么△ABE的面积为( ) A.7 B.8 C.9 D.10 |
|
足球比赛中,胜一场可以积3分,平一场可以积1分,负一场得0分,某足球队最后的积分是17分,他获胜的场次最多是( ) A.3场 B.4场 C.5场 D.6场 |
|
二次函数y=(2x-1)2+2的顶点的坐标是( ) A.(1,2) B.(1,-2) C.(,2) D.(-,-2) |
|
如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是( ) A.4 B.5 C.6 D.10 |
|
下面四个数中,最大的是( ) A. B.sin88° C.tan46° D. |
|
如果一个四边形ABCD是中心对称图形,那么这个四边形一定是( ) A.等腰梯形 B.矩形 C.菱形 D.平行四边形 |
|
||=( ) A. B. C.- D. |
|
如图,要设计一个等腰梯形的花坛,花坛上底120米,下底180米,上下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等.设甬道的宽为x米. (1)用含x的式子表示横向甬道的面积; (2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽; (3)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元? |
|
如图,已知矩形ABCD的边长AB=2,BC=3,点P是AD边上的一动点(P异于A、D),Q是BC边上的任意一点.连AQ、DQ,过P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F. (1)求证:△APE∽△ADQ; (2)设AP的长为x,试求△PEF的面积S△PEF关于x的函数关系式,并求当P在何处时,S△PEF取得最大值,最大值为多少? (3)当Q在何处时,△ADQ的周长最小?(须给出确定Q在何处的过程或方法,不必给出证明) |
|