下列四个结论中,正确的是( ) A.方程x+=-2有两个不相等的实数根 B.方程x+=1有两个不相等的实数根 C.方程x+=2有两个不相等的实数根 D.方程x+=a(其中a为常数,且|a|>2)有两个不相等的实数根 |
|
已知,则的值是( ) A. B.- C.2 D.-2 |
|
不等式组的所有整数解之和是( ) A.9 B.12 C.13 D.15 |
|
有一组数椐:3,4,5,6,6,则下列四个结论中正确的是( ) A.这组数据的平均数、众数、中位数分别是4.8,6,6 B.这組数据的平均数、众数、中位数分别是5,5,5 C.这组数据的平均数、众数、中位数分别是4.8,6,5 D.这组数据的平均数、众数、中位数分别是5,6,6 |
|
若m•23=26,则m等于( ) A.2 B.4 C.6 D.8 |
|
已知地球上海洋面积约为361 000 000km2,361 000 000这个数用科学记数法可表示为( ) A.3.61×106 B.3.61×107 C.3.61×108 D.3.61×109 |
|
△ABC的内角和为( ) A.180° B.360° C.540° D.720° |
|
2×(-)的结果是( ) A.-4 B.-1 C. D. |
|
操作探究题: (1)在平面直角坐标系x0y中,画出函数y=-2x2的图象; (2)将抛物线y=-2x2怎样平移,使得平移后的抛物线满足:①过原点,②抛物线与x正半轴的另一个交点为Q,其顶点为P,且∠OPQ=90°;并写出抛物线的函数表达式; (3)在上述直角坐标系中,以O为圆心,OP为半径画圆,交x轴于A、B(A点在左边)两点,在抛物线(2)上是否存在一点M,使S△MOA:S△POB=2:1?若存在,求出M点的坐标;若不存在,说明理由. (4)在(3)的条件下,是否存这样的直线过A点且与抛物线只有一个交点?若存在,直接写出其解析式.若不存在,说明理由. |
|
【问题情境】 已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少? 【数学模型】 设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+)(x>0). 【探索研究】 (1)我们可以借鉴以前研究函数的经验,先探索函数y=x+(x>0)的图象和性质. ①填写下表,画出函数的图象;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+(x>0)的最小值. 【解决问题】 (2)用上述方法解决“问题情境”中的问题,直接写出答案. |
|||||||||||||||||||||