如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F. (1)求证:CF=BF; (2)若AD=2,⊙O的半径为3,求BC的长. |
|
为了迎接“五•一”小长假的购物高峰,某运动品牌服装专卖店准备购进甲、乙两种服装,甲种服装每件进价180元,售价320元;乙种服装每件进价150元,售价280元. (1)若该专卖店同时购进甲、乙两种服装共200件,恰好用去32400元,求购进甲、乙两种服装各多少件? (2)该专卖店为使甲、乙两种服装共200件的总利润(利润=售价-进价)不少于26700元,且不超过26800元,则该专卖店有几种进货方案? (3)在(2)的条件下,专卖店准备在5月1日当天对甲种服装进行优惠促销活动,决定对甲种服装每件优惠a(0<a<20)元出售,乙种服装价格不变,那么该专卖店要获得最大利润应如何进货? |
|
如图,已知函数的图象与一次函数y=kx+b的图象交于点A(1,m),B(n,2)两点. (1)求一次函数的解析式; (2)将一次函数y=kx+b的图象沿x轴负方向平移a(a>0)个单位长度得到新图象,求这个新图象与函数的图象只有一个交点M时a的值及交点M的坐标. |
|
如图,一艘船以每小时60海里的速度自A向正北方向航行,船在A处时,灯塔S在船的北偏东30°,航行1小时后到B处,此时灯塔S在船的北偏东75°,(运算结果保留根号) (1)求船在B处时与灯塔S的距离; (2)若船从B处继续向正北方向航行,问经过多长时间船与灯塔S的距离最近. |
|
甲口袋中装有两个相同的小球,它们的标号分别为2和7,乙口袋中装有两个相同的小球,它们的标号分别为4和5,丙口袋中装有三个相同的小球,它们的标号分别为3,8,9.从这3个口袋中各随机地取出1个小球. (1)求取出的3个小球的标号全是奇数的概率是多少? (2)以取出的三个小球的标号分别表示三条线段的长度,求这些线段能构成三角形的概率. |
|
如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明. |
|
先化简,再求值:,其中. |
|
计算:. |
|
如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…Mn分别为边B1B2,B2B3,B3B4,…,BnBn+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△BnCnMn的面积为Sn,则Sn= .(用含n的式子表示) |
|
设a,b是方程x2+x-2013=0的两个不相等的实数根,则a2+2a+b的值为 . | |