二元一次方程组的解是( ) A. B. C. D. |
|
不等式3x-6≥0的解集为( ) A.x>2 B.x≥2 C.x<2 D.x≤2 |
|
神舟九号飞船发射成功,一条相关的微博被转发了3570000次,3570000这个数用科学记数法表示为( ) A.357×104 B.35.7×105 C.3.57×106 D.3.57×107 |
|
在2,0,-2,-1这四个数中,最大的数是( ) A.2 B.0 C.-2 D.-1 |
|
如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D. (1)求该抛物线的函数关系式; (2)当△ADP是直角三角形时,求点P的坐标; (3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由. |
|
已知:如图,△ABC内接于⊙O,AB为直径,弦CE⊥AB于F,C是的中点,连接BD并延长交EC的延长线于点G,连接AD,分别交CE、BC于点P、Q. (1)求证:P是△ACQ的外心; (2)若,求CQ的长; (3)求证:(FP+PQ)2=FP•FG. |
|
某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车. (1)每名熟练工和新工人每月分别可以安装多少辆电动汽车? (2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案? (3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能地少? |
|
如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF. (1)求证:△BCE≌△FDC; (2)判断四边形ABDF是怎样的四边形,并说明理由. |
|
如图所示一次函数y=x+b与反比例函数在第一象限的图象交于点B,且点B的横坐标为1,过点B作y轴的垂线,C为垂足,若S△BCO=,求一次函数和反比例函数的解析式. |
|
某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,下图是根据这组数据绘制的统计图,图中从左到右各长方形高度之比为3:4:5:8:2,又知此次调查中捐15元和20元的人数共39人. (1)他们一共抽查了多少人捐款数不少于20元的概率是多少? (2)这组数据的众数、中位数各是多少? (3)若该校共有2310名学生,请估算全校学生共捐款多少元? |
|