在△ABC中,∠C=90°,若,则cosB的值为( ) A. B. C.2 D. |
|
一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的长度为y(cm)与燃烧时间x(小时)的函数关系用图象表示为下图中的( ) A. B. C. D. |
|
抛物线y=x2-(2m-1)x-2m与x轴的两个交点为A(x1,0),B(x2,0),若||=1,则m的值为( ) A.- B.± C.0 D. |
|
无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 |
|
下列函数中,y的值随x的值增大而增大的函数是( ) A.y=-2 B.y=-x+1 C.y=x-3 D.y= |
|
已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H. (1)如图①,当∠MAN点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:______; (2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明; (3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论) |
|
如图,已知抛物线C1:y=a(x-2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点A的横坐标是-1. (1)求P点坐标及a的值; (2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向左平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点A成中心对称时,求C3的解析式y=a(x-h)2+k; (3)如图(2),点Q是x轴负半轴上一动点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、E为顶点的三角形是直角三角形时,求顶点N的坐标. |
|
已知:关于x的一元二次方程(m-1)x2+(m-2)x-1=0(m为实数) (1)若方程有两个不相等的实数根,求m的取值范围; (2)在(1)的条件下,求证:无论m取何值,抛物线y=(m-1)x2+(m-2)x-1总过x轴上的一个固定点; (3)关于x的一元二次方程(m-1)x2+(m-2)x-1=0有两个不相等的整数根,把抛物线y=(m-1)x2+(m-2)x-1向右平移3个单位长度,求平移后的解析式. |
|
如图(1),凸四边形ABCD,如果点P满足∠APD=∠APB=α,且∠BPC=∠CPD=β,则称点P为四边形ABCD的一个半等角点. (1)在图(2)正方形ABCD内画一个半等角点P,且满足α≠β; (2)在图(3)四边形ABCD中画出一个半等角点P,保留画图痕迹(不需写出画法). |
|
某商场用2500元购进A、B两种新型节能台灯共50盏,这两种台灯的进价、标价如下表所示.
(2)在每种台灯销售利润不变的情况下,若该商场计划销售这批台灯的总利润至少为1400元,问至少需购进B种台灯多少盏? |
||||||||||