相关试题
当前位置:首页 > 初中数学试题
某市2012年在校初中生的人数约为23万.数230000用科学记数法表示为( )
A.23×104
B.2.3×105
C.0.23×103
D.0.023×106
manfen5.com 满分网在实数范围内有意义,则x的取值范围是( )
A.x<3
B.x≤3
C.x>3
D.x≥3
2-(-8)的结果是( )
A.6
B.-6
C.10
D.-10
Rt△ABC在直角坐标系内的位置如图1所示,反比例函数manfen5.com 满分网在第一象限内的图象与BC边交于点D(4,m),与直线AB:y=manfen5.com 满分网x+b交于点E(2,n).
(1)m=______,点B的纵坐标为______;(用含n的代数式表示);
(2)若△BDE的面积为2,设直线AB与y轴交于点F,问:在射线FD上,是否存在异于点D的点P,使得以P、B、F为顶点的三角形与△ABC相似?若存在,请求出点P的坐标;若不存在,请说明理由.
(3)在(2)的条件下,现有一动点M,从O点出发,沿x轴的正方向,以每秒2个单位的速度运动,设运动时间为t(s),问:是否存在这样的t,使得在直线AB上,有且只有一点N,满足∠MNC=45°?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.

manfen5.com 满分网
已知抛物线y=x2-2ax+a2 (a为常数,a>0),G为该抛物线的顶点.
(1)如图1,当a=2时,抛物线与y轴交于点M,求△GOM的面积;
(2)如图2,将抛物线绕顶点G逆时针旋转90°,所得新图象与y轴交于A、B两点(点A在点B的上方),D为x轴的正半轴上一点,以OD为一对角线作平行四边形OQDE,其中Q点在第一象限.QE交OD于点C,若QO平分∠AQC,AQ=2QC.
①求证:△AQO≌△EQO;
②若QD=OG,试求a的值.
manfen5.com 满分网
某班围棋兴趣小组的同学在一次活动时,他们用25粒围棋摆成了如图1所示的图案.甲、乙、丙3人发现了该图案的以下性质:
甲:这是一个中心对称图形;
乙:这是一个轴对称图形,且有4条对称轴;
丙:这是一个轴对称图形,且它的对称轴经过5粒棋子.
他们想,若去掉其中的若干个棋子,上述性质能否仍具有呢?例如,去掉图案正中间一粒棋子(如图2,用“×”表示去掉棋子),则甲、乙发现的性质仍具有.
请你帮助他们一起进行探究:
(1)在图3中,请去掉4个棋子,使所得图形仅保留甲所发现的性质.
(2)在图4中,请去掉4个棋子,使所得图形仅保留丙所发现的性质.
(3)在图5中,请去掉若干个棋子(大于0且小于10),使所得图形仍具有甲、乙、丙3人所发现的性质.
manfen5.com 满分网
某批发商以50元/千克的成本价购入了某产品800千克,据市场预测,该产品的销售价y(元/千克)与保存时间x(天)的函数关系为y=70+2x,但保存这批产品平均每天将损耗10千克,且最多保存15天.另外,批发商每天保存该批产品的费用为100元.
(1)若该批发商将这批产品保存x天时一次性卖出,试求他所获利润w(元)与x(天)之间的函数关系式;
(2)求批发商所获利润w的最大值.
如图,AB为⊙O的直径,AD平分∠BAC交⊙O于点D,DE⊥AC交AC的延长线于点E,BF⊥AB交AD的延长线于点F,
(1)求证:DE是⊙O的切线;
(2)若DE=3,⊙O的半径为5,求BF的长.

manfen5.com 满分网
有3张扑克牌,分別是红桃3、红桃4和黑桃5.把牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张.
(1)先后两次抽得的数字分别记为s和t,求|s-t|≥l的概率.
(2)甲、乙两人做游戏,现有两种方案.A方案:若两次抽得相同花色则甲胜,否则乙胜.B方案:若两次抽得数字和为奇数则甲胜,否则乙胜.请问甲选择哪种方案胜率更高?
无锡地铁1、2号线即将于2014年通车,为了解市民对地铁票的定价意向,市物价局向社会公开征集定价意见.现某校课外小组也开展了“你认为无锡地铁起步价定为多少合适”的问卷调查,征求社区居民的意见,并将调查结果整理后制成了如下统计图:
manfen5.com 满分网
根据统计图解答:
(1)同学们一共随机调查了______人;
(2)请你把条形统计图补充完整;
(3)如果在该社区随机咨询一位居民,那么该居民支持“起步价为2元”的概率是______
(4)假定该社区有1万人,请估计该社区支持“起步价为3元”的居民大约有______人.
共1196510条记录 当前(82871/119651) 首页 上一页 82866 82867 82868 82869 82870 82871 82872 82873 82874 82875 82876 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.