已知抛物线y=ax2+bx+2与x轴相交于点A(x1,0),B(x2,0)(x1<x2),且x1,x2是方程x2-2x-3=0的两个实数根,点C为抛物线与y轴的交点. (1)求a,b的值; (2)分别求出直线AC和BC的解析式; (3)若动直线y=m(0<m<2)与线段AC,BC分别相交于D,E两点,则在x轴上是否存在点P,使得△DEP为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由. |
|
如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C. (1)求证:CD是⊙O的切线; (2)若CB=2,CE=4,求AE的长. |
|
某工厂现有甲种原料280kg,乙种原料190kg,计划用这两种原料生产A,B两种产品50件,已知生产一件A产品需甲种原料7kg、乙种原料3kg,可获利400元;生产一件B产品需甲种原料3kg,乙种原料5kg,可获利350元. (1)请问工厂有哪几种生产方案? (2)选择哪种方案可获利最大,最大利润是多少? |
|
为了让学生了解安全知识,增强安全意识,我市某中学举行了一次“安全知识竞赛”.为了了解这次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)为样本,绘制成绩统计图,如图所示,请结合统计图回答下列问题: (1)本次测试的样本容量是多少? (2)分数在80.5~90.5这一组的频率是多少? (3)若这次测试成绩80分以上(含80分)为优秀,则优秀人数不少于多少人? |
|
小刘同学为了测量学校教学楼的高度,如图,她先在A处测得楼顶C的仰角为30°,再向楼的方向直行20米到达B处,又测得楼顶C的仰角为60°,请你帮助小刘计算出学校教学楼的高度(小刘的身高忽略不计,结果保留根号). |
|
如图,点E,F,G,H分别为四边形ABCD的边AB,BC,CD,DA的中点,试判断四边形EFGH的形状,并证明你的结论. |
|
近年来,我市开展以“四通五改六进村”为载体,以生态文明为主要特色的新农村建设活动取得了明显成效.下面是市委领导和市民的一段对话,请你根据对话内容,替市领导回答市民提出的问题.(结果精确到0.1%). |
|
如图,请你画出方格纸中的图形关于点O的中心对称图形,并写出整个图形的对称轴的条数. |
|
先化简,再求值:,其中x=. |
|
计算:= . | |