不等式x-2<0的解集是( ) A.x>-2 B.x<-2 C.x>2 D.x<2 |
|
一次函数y=-x+3的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 |
|
下列运算正确的是( ) A.(a3)2=a6 B.a2•a=a2 C.a+a=a2 D.a6÷a3=a2 |
|
某地煤矿储量储量约为273000000吨,数据273 000 000用科学记数法表示为2.73×10n,则n的值是( ) A.5 B.6 C.7 D.8 |
|
如果零上5℃记作+5℃,那么零下5℃记作( ) A.-5 B.-10 C.-10℃ D.-5℃ |
|
如图,在平面直角坐标系中,点A的坐标为(1,),△AOB的面积是. (1)求点B的坐标; (2)求过点A、O、B的抛物线的解析式; (3)在(2)中抛物线的对称轴上是否存在点C,使△AOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由; (4)在(2)中x轴下方的抛物线上是否存在一点P,过点P作x轴的垂线,交直线AB于点D,线段OD把△AOB分成两个三角形,使其中一个三角形面积与四边形BPOD面积比为2:3?若存在,求出点P的坐标;若不存在,请说明理由. |
|
在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),∠BPE=∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G. (1)当点P与点C重合时(如图1).求证:△BOG≌△POE; (2)通过观察、测量、猜想:=______,并结合图2证明你的猜想; (3)把正方形ABCD改为菱形,其他条件不变(如图3),若∠ACB=α,求的值.(用含α的式子表示) |
|
为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元. (1)求购进A、B两种纪念品每件各需多少元? (2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案? (3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元? |
|
如图所示,当小华站立在镜子EF前A处时,他看自己的脚在镜中的像的俯角为45°.若小华向后退0.5米到B处,这时他看自己的脚在镜中的像的俯角为30°.求小华的眼睛到地面的距离.(结果精确到0.1米,参考数据:≈1.73) |
|
甲.乙两地距离300km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系,根据图象,解答下列问题: (1)线段CD表示轿车在途中停留了______h; (2)求线段DE对应的函数解析式; (3)求轿车从甲地出发后经过多长时间追上货车. |
|