下列各式计算正确的是( ) A.10a6÷5a2=2a4 B.3+2=5 C.2(a2)3=6a6 D.(a-2)2=a2-4 |
|
如图是一个几何体的三视图,则这个几何体是( ) A.圆锥 B.圆柱 C.长方体 D.球体 |
|
若点(-2,y1)、(-1,y2)、(1,y3)在反比例函数y=的图象上,则下列结论中的正确的是( ) A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y1 |
|
如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA=10厘米,OC=6厘米,现有两动点P,Q分别从O,A同时出发,点P在线段OA上沿OA方向作匀速运动,点Q在线段AB上沿AB方向作匀速运动,已知点P的运动速度为1厘米/秒. (1)设点Q的运动速度为0.5厘米/秒,运动时间为t秒, ①当△CPQ的面积最小时,求点Q的坐标; ②当△COP和△PAQ相似时,求点Q的坐标. (2)设点Q的运动速度为a厘米/秒,问是否存在a的值,使得△OCP与△PAQ和△CBQ这两个三角形都相似?若存在,请求出a的值,并写出此时点Q的坐标;若不存在,请说明理由. |
|
某商店今年1-6月份经营A、B两种电子产品,已知A产品每个月的销售数量y(件)与月份x(1≤x≤6且x为整数)之间的关系如下表:
已知B产品每个月的销售数量m(件)与月份x之间的关系为:m=-2x+62,B产品每个月的售价n(元)与月份x之间存在如图所示的变化趋势: (1)请观察题中表格,用所学过的一次函数或反比例函数的有关知识,直接写出y与x的函数关系式; (2)请观察如图所示的变化趋势,求出n与x的函数关系式; (3)求出此商店1-6月份经营A、B两种电子产品的销售总额w与月份x之间的函数关系式; (4)今年7月份,商店调整了A、B两种电子产品的价格,A产品价格在6月份基础上增加a%,B产品价格在6月份基础上减少a%,结果7月份A产品的销售数量比6月份减少2a%,B产品的销售数量比6月份增加2a%.若调整价格后7月份的销售总额比6月份的销售总额少2000元,请根据以下参考数据估算a的值. (参考数据:6.32=39.69,6.42=40.91,6.52=42.25,6.62=43.56) |
|||||||||||||||
如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2. (1)求证:DC=BC; (2)E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论; (3)在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值. |
|
若反比例函数过面积为9的正方形AMON的顶点A,且过点A的直线y2=mx-n的图象与反比例函数的另一交点为B(-1,a) (1)求出反比例函数与一次函数的解析式; (2)求△AOB的面积. |
|
某班有50名同学,男、女生人数各占一半,在本周操行评定中操行得分情况如图(1)统计表中所示,图(2)是该班本周男生操行得分的条形统计图:
(1)补全统计表和条形统形图; (2)计算全班同学的操行平均得分; (3)若要在操行得分为5分的4名同学中选出两名同学作“本周明星”,用画树状图或列表的方法求出选为“本周明星”的正好是一名男同学和一名女同学的概率. |
|||||||||||||
先化简,再求值:,其中a是方程的解. |
|
如图所示,矩形ABCD中,点E在CB的延长线上,使CE=AC,连接AE,点F是AE的中点,连接BF、DF,求证:BF⊥DF. |
|