对于反比例函数y=,下列说法正确的是( ) A.图象经过点(1,-1) B.图象位于第二、四象限 C.图象是中心对称图形 D.当x<0时,y随x的增大而增大 |
|
从边长为a的正方形内去掉一个边长为b的小正方形(如图1),然后将剩余部分剪拼成一个矩形(如图2),上述操作所能验证的等式是( ) A.(a-b)2=a2-2ab+b2 B.a2-b2=(a+b)(a-b) C.(a+b)2=a2+2ab+b2 D.a2+ab=a(a+b) |
|
已知a-b=1,则代数式2b-2a-3的值是( ) A.-1 B.1 C.-5 D.4 |
|
如图是由八个相同小正方体组合而成的几何体,则其左视图是( ) A. B. C. D. |
|
下列计算正确的是( ) A.b3+b3=b6 B.2y2-3y5=6y10 C.(-a)2÷a=a D.(ab4)2=ab8 |
|
-的倒数是( ) A.-5 B. C.- D.5 |
|
如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A⇒B⇒C⇒D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒. (1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度; (2)求正方形边长及顶点C的坐标; (3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标; (4)如果点P、Q保持原速度不变,当点P沿A⇒B⇒C⇒D匀速运动时,OP与PQ能否相等?若能,写出所有符合条件的t的值;若不能,请说明理由. |
|
某企业信息部进行市场调研发现: 信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:
(1)求出yB与x的函数关系式; (2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x之间的关系,并求出yA与x的函数关系式; (3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少? |
|||||||||||||
已知:在四边形ABCD中,AD∥BC,∠BAC=∠D,点E、F分别在BC、CD上,且∠AEF=∠ACD,试探究AE与EF之间的数量关系. (1)如图1,若AB=BC=AC,则AE与EF之间的数量关系是什么; (2)如图2,若AB=BC,你在(1)中得到的结论是否发生变化?写出猜想,并加以证明; (3)如图3,若AB=kBC,你在(1)中得到的结论是否发生变化?写出猜想不用证明. |
|
如图1,△ABC中,AD为BC边上的中线,则S△ABD=S△ADC,由这个结论解答下列问题: (1)图2中,E,F分别为矩形ABCD的边AD,BC的中点,则S阴和S矩形ABCD之间满足的关系式为______;图3中,E,F分别为平行四边形ABCD的边AD,BC的中点,则S阴和S平行四边形ABCD之间满足的关系式为______; (2)图4中,E,F分别为四边形ABCD的边AD,BC的中点,则S阴和S四边形ABCD之间满足的关系式为______; (3)解决问题:如图5中,E、G、F、H分别为任意四边形ABCD的边AD,AB,BC,CD的中点,并且图中四个小三角形的面积的和为1,即S1+S2+S3+S4=1,求S阴的值.(写出过程) |
|