如图,抛物线的顶点坐标是,且经过点A(8,14). (1)求该抛物线的解析式; (2)设该抛物线与y轴相交于点B,与x轴相交于C、D两点(点C在点D的左边),试求点B、C、D的坐标; (3)设点P是x轴上的任意一点,分别连接AC、BC.试判断:PA+PB与AC+BC的大小关系,并说明理由. |
|
阅读下列材料: 一般地,n个相同的因数a相乘记为an,记为an.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若an=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为logab(即logab=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4). (1)计算以下各对数的值: log24=______,log216=______,log264=______. (2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式; (3)由(2)的结果,你能归纳出一个一般性的结论吗? logaM+logaN=______;(a>0且a≠1,M>0,N>0) (4)根据幂的运算法则:an•am=an+m以及对数的含义证明上述结论. |
|
如图,在△ABC中,∠C=2∠B,D是BC上的一点,且AD⊥AB,点E是BD的中点,连接AE. (1)求证:∠AEC=∠C; (2)求证:BD=2AC; (3)若AE=6.5,AD=5,那么△ABE的周长是多少? |
|
为配合我市“创卫”工作,某中学选派部分学生到若干处公共场所参加义务劳动.若每处安排10人,则还剩15人;若每处安排14人,则有一处的人数不足14人,但不少于10人.求这所学校选派学生的人数和学生所参加义务劳动的公共场所个数. |
|
某乡薄铁社厂的王师傅要在长25cm,宽18cm的薄铁板上截出一个最大的圆和两个尽可能大的小圆,他先画了草图,但他在求小圆的半径时遇到了困难,请你帮助王师傅计算出这两个小圆的半径. |
|
九年级一班的两位学生对本班的一次数学成绩(分数取整数,满分为100分)进行了一次初步统计,看到80分以上(含80分)有17人,但没有满分,也没有低于30分的.为更清楚了解本班的考试情况,他们分别用两种方式进行了统计分析,如图1和图2所示.请根据图中提供的信息回答下列问题: (1)班级共有多少名学生参加了考试; (2)填上两个图中三个空缺的部分; (3)问85分到89分的学生有多少人? |
|
先化简,再求值:÷,其中. |
|
计算:. |
|
如图,E、F分别是▱ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=10cm2,S△BQC=20cm2,则阴影部分的面积为 . |
|
从-1,1,2这三个数中,任取两个不同的数作为一次函数y=kx+b的系数k,b,则一次函数y=kx+b的图象不经过第四象限的概率是 . | |