函数y=中自变量的取值范围是( ) A.x≠0 B.x≠2 C.x≠-2 D.x=2 |
|
下列调查: ①调查一批灯泡的使用寿命; ②调查全班同学的身高; ③调查市场上某种食品的色素含量是否符合国家标准; ④企业招聘,对应聘人员进行面试. 其中符合用抽样调查的是( ) A.①② B.①③ C.②④ D.②③ |
|
某校羽毛球训练队共有8名队员,他们的年龄(单位:岁)分別为:12,13,13,14,12,13,15,13,则他们年龄的众数为( ) A.12 B.13 C.14 D.15 |
|
下列图形中,你认为既是中心对称图形又是轴对称图形的是( ) A. B. C. D. |
|
如图是由七个相同的小正方体堆砌而成的几何体,则这个几何体的俯视图是( ) A. B. C. D. |
|
|-|的相反数是( ) A. B.- C.3 D.-3 |
|
如图,直线y=-x+20与x轴、y轴分别交于A、B两点,动点P从A点开始在线段AO上以每秒3个长度单位的速度向原点O运动.动直线EF从x轴开始以每秒1个长度单位的速度向上平行移动(即EF∥x轴),并且分别与y轴、线段AB交于E、F点.连接FP,设动点P与动直线EF同时出发,运动时间为t秒. (1)当t=1秒时,求梯形OPFE的面积. (2)t为何值时,梯形OPFE的面积最大,最大面积是多少? (3)设t的值分别取t1、t2时(t1≠t2),所对应的三角形分别为△AF1P1和△AF2P2.试判断这两个三角形是否相似,请证明你的判断. |
|
某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:
(1)求W关于x的函数关系式,并求出x的取值范围 (2)若公司要求总利润不低于17560元,说明有多少种不同分配方案? (3)实际销售过程中,公司发现这批产品尤其是A型产品很畅销,便决定对甲店的最后21件A型产品每件提价a元销售(a为正整数).两店全部销售完毕后结果的总利润为18000元,求a的值.并写出公司这100件产品对甲乙两店是如何分配的? |
||||||||||
如图,已知△ABC,以BC为直径,O为圆心的半圆交AC于点F,点E为的中点,连接BE交AC于点M,AD为△ABC的角平分线,且AD⊥BE,垂足为点H. (1)求证:AB是半圆O的切线; (2)若AB=3,BC=4,求BE的长. |
|
某社区要调查社区居民双休日的学习状况,采用下列调查方式: ①从一幢高层住宅楼中选取200名居民; ②从不同住宅楼中随机选取200名居民; ③选取社区内200名在校学生. (1)上述调查方式最合理的是______; (2)将最合理的调查方式得到的数据制成扇形统计图(如图1)和频数分布直方图(如图2),在这个调查中,200名居民双休日在家学习的有______人; (3)请估计该社区2 000名居民双休日学习时间不少于4小时的人数. |
|