如图,抛物线y=-x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D. (1)直接写出A、B、C三点的坐标和抛物线的对称轴; (2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m; ①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形? ②设△BCF的面积为S,求S与m的函数关系式. |
|
据悉,上海市发改委拟于今年4月27日举行居民用水价格调整听证会,届时将有两个方案提供听证.如图1,射线OA、射线OB分别表示现行的、方案一的每户每月的用水费y(元)与每户每月的用水量x(立方米)之间的函数关系,已知方案一的用水价比现行的用水价每立方米多0.96元;方案二如图2表格所示,每月的每立方米用水价格由该月的用水量决定,且第一、二、三级的用水价格之比为1:1.5:2(精确到0.01元). (1)写出现行的用水价是每立方米多少元? (2)求图1中m的值和射线OB所对应的函数解析式,并写出定义域; (3)若小明家某月的用水量是a立方米,请分别写出三种情况下(现行的、方案一和方案二)该月的水费b(用a的代数式表示); (4)小明家最近10个月来的每月用水量的频数分布直方图如图3所示,估计小明会赞同采用哪个方案请说明理由. |
|
如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60度. (1)求⊙O的直径; (2)若D是AB延长线上一点,连接CD,当BD长为多少时,CD与⊙O相切; (3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速度从B点出发沿BC方向运动,设运动时间为t(s)(0<t<2),连接EF,当t为何值时,△BEF为直角三角形. |
|
有两个可以自由转动的均匀转盘A、B,都被分成了3等份,并在每份内均标有数字,如图所示,规则如下: ①分别转动转盘A、B. ②两个转盘停止后,将两个指针所指份内的数字相乘(若指针停在等分线上,那么重转一次,直到指针指向某一份为止). (1)用列表法(或树状图)分别求出数字之积为3的倍数和为5的倍数的概率; (2)小亮和小芸想用这两个转盘做游戏,他们规定:数字之积为3的倍数时,小亮得2分;数字之积为5的倍数时,小芸得3分.这个游戏对双方公平吗?请说明理由;认为不公平的,试修改得分规定,使游戏双方公平. |
|
国民体质监测中心等机构开展了青少年形体测评.专家组随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对专家的测评数据作了适当处理(如果一个学生有一种以上不良姿势,我们以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题: (1)请将两幅统计图补充完整; (2)在这次形体测评中,一共抽查了______名学生,如果全市有10万名初中生,那么全市初中生中,三姿良好的学生约有______人; (3)根据统计结果,请你简单谈谈自己的看法. |
|
先化简,再求值:,其中. |
|
计算:-(-4)-1+-2cos30°. |
|
已知正比例函数y1=x,反比例函数,由y1,y2构造一个新函数y=x+其图象如图所示.(因其图象似双钩,我们称之为“双钩函数”).给出下列几个命题: ①该函数的图象是中心对称图形; ②当x<0时,该函数在x=-1时取得最大值-2; ③y的值不可能为1; ④在每个象限内,函数值y随自变量x的增大而增大. 其中正确的命题是 .(请写出所有正确的命题的序号) |
|
如图,∠AOB=30°,过OA上到点O的距离为1,3,5,7,…的点作OA的垂线,分别与0B相交,得到图所示的阴影梯形,它们的面积依次记为S1,S2,S3,….则 (1)S1= ; (2)通过计算可得S2009= . |
|
如图,AB为⊙O的直径,弦CD⊥AB于点H,连接OC,AD,若BH:CO=1:2,AD=4,则⊙O的周长等于 . |
|