现有两瓶世代连续的果蝇,甲瓶中的个体全为灰身,乙瓶中个体既有灰身也有黑身个体。让乙瓶中的全部灰身个体与异性黑身果蝇交配,若后代都不出现性状分离则可以认定( ) A.甲为乙的亲本,乙中灰身果蝇为杂合体 B.甲为乙的亲本,乙中灰身果蝇为纯合体 C.乙为甲的亲本,乙中灰身果蝇为杂合体 D.乙为甲的亲本,乙中灰身果蝇为纯合体
|
|
果蝇的长翅对残翅为显性,且等位基因位于常染色体上,如果用含有某种药物的食物喂果蝇,所有的果蝇都是残翅。现有一只用此药物喂养过的残翅果蝇,选用下列哪一果蝇与之交配可以确定其基因型( ) A.用药物喂养过的残翅果蝇 B.未用药物喂养过的长翅纯合果蝇 C.未用药物喂养过的残翅果蝇 D.未用药物喂养过的长翅果蝇
|
|
(原创)果蝇灰身(B)对黑身(b)为显性,现将纯种灰身果蝇与黑身果蝇杂交,产生的F1代再自交产生F2代,将F2代中所有果蝇自由交配,产生F3代。则F3代中灰身与黑身果蝇的比例是 A.3:1 B 5:1 C 8:1 D 9:1
|
|
牡丹的花色种类多种多样,其中白色的是不含花青素,深红色的含花青素最多,花青素含量的多少决定着花瓣颜色的深浅,由两对独立遗传的基因(A和a,B和b)所控制;显性基因A和B可以使花青素含量增加,两者增加的量相等,并且可以累加。一深红色牡丹同一白色牡丹杂交,得到中等红色的个体。若这些个体自交,其子代将出现花色的种类是 ( ) A.3种 B.4种 C.5种 D.6种
|
|
番茄果实的红色对黄色为显性,两室对一室为显性。两对性状分别受两对非同源染色体上的非等位基因控制。育种者用纯合的具有这两对相对性状的亲本杂交,子二代中重组表现型个体数占子二代总数的 ( ) A.3/8或5/8 B.9/16或5/16 C.7/8或5/8 D.1/4或1/8
|
|
南瓜所结果实中白色(A)对黄色(a)为显性,盘状(B)对球状(b)为显性,两对基因独立遗传。若让基因型AaBb的白色盘状南瓜与“某南瓜”杂交,子代表现型及其比例如图所示。则“某南瓜”的基因型是: A. AaBb B. Aabb C. aaBb D. aabb
|
|
香豌豆中,只有两个显性基因CR同时存在时,花为红色。这两对基因是独立分配的。某一红花植株与另二植株杂交,所得结果如下:①与ccRR杂交,子代中的50%为红花 ②与CCrr杂交,子代中100%为红花该红花植株的基因型为 A.CcRR B.CCRr C.CCRR D.CcRr
|
|
(原创)已知一玉米植株的基因型为AABB,周围虽生长有其他基因型的玉米植株,但其子代不可能出现的基因型是( ) A.AABB B.AABb C.aaBb D.AaBb
|
|
基因型为AAbb与aaBB的小麦进行杂交,这两对等位基因独立遗传,F1杂种形成的配子种类数和F2的基因型种类数分别是 A.0和16 B.2和4 C.8和27 D. 4和9
|
|
两个遗传性状不同的纯种玉米杂交,得到F1在生产上种植能获得稳定的高产。若种植到F2则出现产量下降,其原因是 A、F2 生命力下降 B、F2 出现性状分离 C、F2 高度不孕 D、F2不适应当地环境
|
|