算法的三种基本结构是( ) A.顺序结构、条件结构、循环结构 B.顺序结构、流程结构、循环结构 C.顺序结构、分支结构、流程结构 D.流程结构、循环结构、分支结构 |
|
已知二次函数f(x)=ax2+bx满足条件:①f(0)=f(1); ②f(x)的最小值为-. (1)求函数f(x)的解析式; (2)设数列{an}的前n项积为Tn,且Tn=()f(n),求数列{an}的通项公式; (3)在(2)的条件下,若5f(an)是bn与an的等差中项,试问数列{bn}中第几项的值最小?求出这个最小值. |
|
设函数,g(x)=2x+b,当时,f(x)取得极值. (1)求a的值,并判断是函数f(x)的极大值还是极小值; (2)当x∈[-3,4]时,函数f(x)与g(x)的图象有两个公共点,求b的取值范围. |
|
在平面直角坐标系xOy中,直线l与抛物线y2=2x相交于A、B两点. (1)求证:“如果直线l过点T(3,0),那么=3”是真命题; (2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由. |
|
如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点, (1)求证:AC⊥BC1; (2)求证:AC1∥平面CDB1; (3)求三棱锥C1-CDB1的体积. |
|
潮州统计局就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1000,1500)). (1)求居民月收入在[3000,3500)的频率; (2)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10000人中用分层抽样方法抽出100人作进一步分析,则月收入在[2500,3000)的这段应抽多少人? |
|
设集合A={x|x2<4},. (1)求集合A∩B; (2)若不等式2x2+ax+b<0的解集为B,求a,b的值. |
|
某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未用血清的人一年中的感冒记录作比较,提出假设H:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得Χ2≈3.918,经查对临界值表知P(Χ2≥3.841)≈0.05.则下列结论中,正确结论的序号是 (1)有95%的把握认为“这种血清能起到预防感冒的作用” (2)若某人未使用该血清,那么他在一年中有95%的可能性得感冒 (3)这种血清预防感冒的有效率为95% (4)这种血清预防感冒的有效率为5% |
|
如图,一个空间几何体的主视图和侧视图都是边长为1的正三角形,俯视图是一个圆,那么几何体的侧面积为 . |
|
函数f(x)=2x3+3x2-12x-5,则函数f(x)的单调增区间是 . | |