为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部缺损的频率分布表,解答下列问题: (Ⅰ)填充频率分布表的空格(将答案直接填在表格内),并根据该频率分布表画出频率分布直方图; (Ⅱ)根据样本中50位同学估计参加竞赛的900名学生的竞赛成绩平均分.
|
||||||||||||||||||||||
已知一个5次多项式为f(x)=4x5-3x3+2x2+5x+1,用秦九韶算法求这个多项式当x=2时的值. |
|
平面内一条直线把平面分成2部分,2条相交直线把平面分成4部分,1个交点;3条相交直线最多把平面分成7部分,3个交点;试猜想:n条相交直线最多把平面分成 部分, 个交点. | |
已知米粒等可能地落入如图的示的四边形ABCD内,如果通过大量的实验发现米粒落入△BCD内的频率稳定在附近,那么点A和点C到直线BD的距离之比约为 . |
|
将正整数排成下表: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 … 则数表中的300应出现在第 行. |
|
设x,y为实数,且,则x+y= . | |
某市A.B.C三个区共有高中学生20000人,其中A区高中学生9000人,B区高中学生6000人,现采用分层抽样的方法从这三个区所有高中学生中抽取一个容量为600人的样本进行新课程学习作业量的调查,则A区应抽取 人. | |
数据a1,a2,a3,…,an的方差为σ2,则数据2a1,2a2,2a3,…,2an的方差为 . | |
某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是 36,则样本中净重大于或等于98克并且小于104克的产品的个数是 . |
|
已知函数f(x)=3x-2,x∈R.规定:给定一个实数x,赋值x1=f(x1),若x1≤244,则继续赋值,x2=f(x2),…,以此类推,若xn-1≤244,则xn=f(xn-1),否则停止赋值,如果得到xn称为赋值了n次(n∈N*).已知赋值k次后该过程停止,则x的取值范围是( ) A.(3k-6,3k-5] B.(3k-6+1,3k-5+1] C.(35-k+1,36-k+1] D.(34-k+1,35-k+1] |
|