f(x)与g(x)是定义在R上的两个可导函数,若f(x),g(x)满足f′(x)=g′(x),则f(x)与g(x)满足( ) A.f(x)=g(x) B.f(x)=g(x)=0 C.f(x)-g(x)为常数函数 D.f(x)+g(x)为常数函数 |
|
在平面几何里,有勾股定理:“设△ABC的两边AB,AC互相垂直,则|AB|2+|AC|2=|BC|2”拓展到空间,类比平面几何的勾股定理,“设三棱锥A-BCD的三个侧面ABC、ACD、ADB 两两相互垂直,则可得”( ) A.|AB|2+|AC|2+|AD|2=|BC|2+|CD|2+|BD|2 B.S2△ABC×S2△ACD×S2△ADB=S2△BCD C.S△ABC2+S△ACD2+S△ADB2=S△BCD2 D.|AB|2×|AC|2×|AD|2=|BC|2×|CD|2×|BD|2 |
|
如果函数y=f(x)的图象如图,那么导函数y=f′(x)的图象可能是( ) A. B. C. D. |
|
用反证法证明命题“三角形的内角至多有一个钝角”时,假设正确的是( ) A.假设至少有一个钝角 B.假设没有一个钝角 C.假设至少有两个钝角 D.假设没有一个钝角或至少有两个钝角 |
|
曲线y=在点(1,-1)处的切线方程为( ) A.y=x-2 B.y=-3x+2 C.y=2x-3 D.y=-2x+1 |
|
若直线l的方向向量为,平面α的法向量为,则( ) A.l∥α B.l⊥α C.l⊂α D.l与α斜交 |
|
现有8名奥运会志愿者,其中志愿者A1,A2,A3通晓日语,B1,B2,B3通晓俄语,C1,C2通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (Ⅰ)求A1被选中的概率; (Ⅱ)求B1和C1不全被选中的概率. |
|
已知函数f(x)=sin2xsinφ+cos2xcosφ-sin(+φ)(0<φ<π),其图象过点(,). (Ⅰ)求φ的值; (Ⅱ)将函数y=f(x)的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在[0,]上的最大值和最小值. |
|
已知向量. (1)若,求k的值; (2)若,求m的值. |
|
从某学校高三年级共800名男生中随机抽取50名测量身高,测量发现被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160)、第二组[160,165);…第八组[190,195],右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列. (1)估计这所学校高三年级全体男生身高180cm以上(含180cm)的人数; (2)求第六组、第七组的频率并补充完整频率分布直方图; (3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x、y,求满足|x-y|≤5的事件概率. |
|