如果等差数列{an}中,a3+a4+a5=12,那么a1+a2+…+a7=( ) A.14 B.21 C.28 D.35 |
|
已知cosθ•tanθ<0,那么角θ是( ) A.第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角 D.第一或第四象限角 |
|
设f(x)=(a>0)为奇函数,且|f(x)|min=,数列{an}与{bn}满足如下关系:a1=2,,. (1)求f(x)的解析表达式; (2)证明:当n∈N+时,有bn≤. |
|
过抛物线x2=4y上不同两点A、B分别作抛物线的切线相交于P点,. (1)求点P的轨迹方程; (2)已知点F(0,1),是否存在实数λ使得?若存在,求出λ的值,若不存在,请说明理由. |
|
如图,在梯形ABCD中,AB∥CD,AD=DC=CB=a,.∠ABC=60°,平面ACFE⊥平面ABCD,四边形ACFE是矩形,AE=a,点M在线段EF上. (1)求证:BC⊥平面ACFE; (2)当EM为何值时,AM∥平面BDF?证明你的结论; (3)求二面角B-EF-D的平面角的余弦值. |
|
在一次由三人参加的围棋对抗赛中,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜甲的概率为0.6,比赛按以下规则进行;第一局:甲对乙;第二局:第一局胜者对丙;第三局:第二局胜者对第一局败者;第四局:第三局胜者对第二局败者,求: (1)乙连胜四局的概率; (2)丙连胜三局的概率. |
|
已知向量=(sinB,1-cosB)与向量=(2,0)的夹角为,其中A、B、C是△ABC的内角. (Ⅰ)求角B的大小; (Ⅱ)求sinA+sinC的取值范围. |
|
一个质点从数轴上原点出发,每次沿数轴向正方向或负方向跳动1个单位,经过10次跳动,质点与原点距离为4,则质点不同的运动方法共有 种(用数字作答). | |
在算式:“4×□+1×□=30”的两个□中,分别填入两个自然数,使他们的倒数之和最小,则这两个数应分别为 . | |
已知双曲线的两条渐近线的夹角为,则e= . | |