已知cos(π-e)=a,其中e是自然对数的底数,则sine的值为( ) A. B.- C. D.-a |
|
已知全集U={2,3,4,5,6,7},M={3,5,7},P={2.3.4.5}则图中的阴影部分表示的集合是( ) A.{2,3,4,5} B.{2,4} C.{3,5} D.{7} |
|
设函数f(x)=lg(x-3)+lgx,则f(5)=( ) A.1 B.0 C.0.1 D.-1 |
|
设x=-1是f(x)=(x2+ax+b)e2-x(x∈R)的一个极值点, (1)求a与b的关系式(用a表示b)并求f(x)的单调区间 (2)是否存在实数m,使得对任意a∈(-2,-1)及λ1λ2∈[-2,1]总有|f(λ1)-f(λ2)|<[(m+2)a+1]e3恒成立,若存在求出m的范围.若不存在,说明理由. |
|
已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且R(x)= (1)写出年利润W(万元)关于年产量x(千件)的函数解析式; (2)年产量为多少千年时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入-年总成本) |
|
设函数f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f'(x)的最小值为-12. (Ⅰ)求a,b,c的值; (Ⅱ)求函数f(x)的单调递增区间,并求函数f(x)在[-1,3]上的最大值和最小值. |
|
已知两个数列{Sn}、{Tn}分别: 当n∈N*,Sn=1-,Tn=. (1)求S1,S2,T1,T2; (2)猜想Sn与Tn的关系,并用数学归纳法证明. |
|
求证:当. |
|
若0<a<2,0<b<2,0<c<2,求证:(2-a)b,(2-b)c,(2-c)a不能同时大于1. |
|
直线y=kx(k>o)与曲线y=x2围成图形的面积为,则k的值为 . | |