已知P(3,)是椭圆C:1上的点,Q是P关于x轴的对称点,椭圆C的离心率为.
(1)求椭圆C的方程; (2)A,B是椭圆上位于直线PQ两侧的动点. ①若直线AB的斜率为,求四边形APBQ面积的最大值. ②当A、B在运动过程中满足∠APQ=∠BPQ时,问直线AB的斜率是否为定值,并说明理由.
|
|
如图,在正方体ABCD﹣A1B1C1D1中,E,F分别是棱AA1,AD上的点,且AE=EA1,AFFD. (1)求证:平面EC1D1⊥平面EFB; (2)求二面角E﹣FB﹣A的余弦值.
|
|
某市推行“共享汽车”服务,租用汽车按行驶里程加用车时间收费,标准是“1元/公里+0.2元/分钟”,刚在该市参加工作的小刘拟租用“共享汽车“上下班.单位同事老李告诉他:“上下班往返总路程虽然只有10公里,但偶尔上下班总共也需要用时大约1小时”,并将自己近50天往返开车的花费时间情况统计如下
将老李统计的各时间段频率视为相应概率,假定往返的路况不变,而且每次路上开车花费时间视为用车时间. (1)试估计小刘每天平均支付的租车费用(每个时间段以中点时间计算); (2)小刘认为只要上下班开车总用时不超过45分钟,租用“共享汽车”为他该日的“最优选择”,小刘拟租用该车上下班2天,设其中有ξ天为“最优选择”,求ξ的分布列和数学期望.
|
|||||||||||||
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足sin,4. (1)求△ABC 的面积; (2)若a+c=7,求b的值.
|
|
F1,F2分别为双曲线(a,b>0)的左、右焦点,点P在双曲线上,满足0,若△PF1F2的内切圆半径与外接圆半径之比为,则该双曲线的离心率为_____.
|
|
两个完全相同的长方体的长、宽、高分别为5cm,4cm,3cm,把它们重叠在一起组成一个新长方体,在这些新长方体中,最长的对角线的长度是_____.
|
|
若变量,满足约束条件,则的最大值为______.
|
|
若非零向量满足0且,则与的夹角为_____.
|
|
已知函数,若是的极大值点,则整数的最小值为( ) A.0 B.1 C.2 D.3
|
|
已知数列的通项公式为,数列的通项公式为,设,在数列中,,则实数的取值范围是 A. B. C. D.
|
|