复数i3(1+i)2=( ) A.2 B.-2 C.2i D.-2i |
|
设Sn为数列{an}的前n项和,对任意的n∈N*,都有Sn=(m+1)-man(m为常数,且m>0). (1)求证:数列{an}是等比数列; (2)设数列{an}的公比q=f(m),数列{bn}满足b1=2a1,bn=f(bn-1)(n≥2,n∈N*),求数列{bn}的通项公式; (3)在满足(2)的条件下,求证:数列{bn2}的前n项和. |
|
已知a∈R,函数f(x)=x2(x-a). (1)若函数f(x)在区间内是减函数,求实数a的取值范围; (2)求函数f(x)在区间[1,2]上的最小值h(a); (3)对(2)中的h(a),若关于a的方程有两个不相等的实数解,求实数m的取值范围. |
|
已知两点M(-1,0)、N(1,0),点P为坐标平面内的动点,满足. (1)求动点P的轨迹方程; (2)若点A(t,4)是动点P的轨迹上的一点,K(m,0)是x轴上的一动点,试讨论直线AK与圆x2+(y-2)2=4的位置关系. |
|
如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2. (1)证明:当点E在棱AB上移动时,D1E⊥A1D; (2)在棱AB上是否存在点E,使二面角D1-EC-D的平面角为?若存在,求出AE的长;若不存在,请说明理由. |
|
某班从6名班干部(其中男生4人,女生2人)中选3人参加学校学生会的干部竞选. (1)设所选3人中女生人数为ξ,求ξ的分布列及数学期望; (2)在男生甲被选中的情况下,求女生乙也被选中的概率. |
|
设向量,,其中. (1)若,求tanθ的值; (2)求△AOB面积的最大值. |
|
(《坐标系与参数方程》选做题)以平面直角坐标系的原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线的极坐标方程为ρcosθ-ρsinθ+2=0,则它与曲线(α为参数)的交点的直角坐标是 . | |
(《几何证明选讲》选做题)如图,在△ABC中,∠A=60°,∠ACB=70°,CF是△ABC的边AB上的高,FP⊥BC于点P,FQ⊥AC于点Q,则∠CQP的大小为 . |
|
在实数的原有运算法则中,定义新运算aⓧb=a-2b,则|xⓧ(1-x)|+|(1-x)ⓧx|>3的解集为 . | |