已知函数,数列{an}满足an=f(an-1)(n≥2,n∈N+). (Ⅰ)若,数列{bn}满足,求证:数列{bn}是等差数列; (Ⅱ)若,数列{an}中是否存在最大项与最小项,若存在,求出最大项与最小项;若不存在,说明理由; (Ⅲ)若1<a1<2,试证明:1<an+1<an<2. |
|
已知椭圆的离心率为,过右顶点A的直线l与椭圆C相交于A,B两点,且B(-1,-3). (Ⅰ)求椭圆C和直线l的方程; (Ⅱ)记曲线C在直线l下方的部分与线段AB所围成的平面区域(含边界)为D.若曲线x2-2mx+y2+4y+m2-4=0与D有公共点,试求实数m的最小值. |
|
在如图所示的几何体中,△ABC为正三角形,AE和CD都垂直于平面ABC,且AE=AB=2,CD=1,F为BE的中点. (I)求证:DF∥平面ABC; (II)求证:平面DBE⊥平面ABE; (III)求直线BD和平面ACDE所成角的余弦值. |
|
甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,具体成绩如图所示,且甲学生的平均分为85分. (Ⅰ)观察茎叶图,求图中的x (Ⅱ)若要从中选派一人参加数学竞赛,你认为选派哪位学生参加合适?请说明理 由; (Ⅲ)若将频率视为概率,对甲同学在今后的3次数学竞赛成绩进行预测,记这3次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望Eξ. |
|
在△ABC中,角A,B,C所对的边分别为a,b,c,满足,且△ABC的面积为2. (Ⅰ)求bc的值; (Ⅱ)若b+c=6,求a的值. |
|
(几何证明选讲选做题)如图,圆O上一点C在直径AB上的射影为D,CD=4,BD=8,则圆O的半径等于______. |
|
(坐标系与参数方程选做题) 已知曲线C的极坐标方程是ρ=6sinθ,以极点为坐标原点,极轴为x的正半轴,建立平面直角坐标系,直线l的参数方程是为参数),则直线l与曲线C相交所得的弦的弦长为 . |
|
如图,对于大于1的自然数m的n次幂可用奇数进行如图所示的“分裂”,仿此,记53的“分裂”中的最小数为a,而52的“分裂”中最大的数是b,则a+b=______. |
|
如图所示,在一个边长为1的正方形AOBC内,曲线y=x2和曲线围成一个叶形图(阴影部分),向正方形AOBC内随机投一点(该点落在正方形AOBC内任何一点是等可能的),则所投的点落在叶形图内部的概率是______. |
|
某程序框图如图所示,该程序运行后输出M,N的值分别为______. |
|