在棱长为的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去个三棱锥后 ,剩下的几何体的体积是( ) A. B. C. D.
|
|
判断下列各组中的两个函数是同一函数的为( ) (1),; (2),; (3),; (4),. A.(1),(4) B.(2),(3) C.(1) D.(3)
|
|
已知集合则中所含元素个数为( ) A.3 B.6 C.8 D.10
|
|
渔场中鱼群的最大养殖量是m吨,为保证鱼群的生长空间,实际养殖量不能达到最大养殖量,必须留出适当的空闲量。已知鱼群的年增长量y吨和实际养殖量x吨与空闲率乘积成正比,比例系数为k(k>0). 写出y关于x的函数关系式,指出这个函数的定义域; 求鱼群年增长量的最大值; 当鱼群的年增长量达到最大值时,求k的取值范围.
|
|
已知二次函数y=f(x)(x∈R)的图像是一条开口向下且对称轴为x=3的抛物线,试比较大小: (1)f(6)与f(4)
|
|
已知集合若,则实数m的取值范围是( )
|
|
记关于x的不等式的解集为P,不等式的解集为Q. (1)若a=3,求P (2)若求正数a的取值范围
|
|
已知集合且,求a的值。
|
|
已知在定义域上是减函数,且则的取值范围是_____________
|
|
如果函数在区间上是增函数,那么的取值范围是__________________.
|
|