如右图所示,甲分子固定在坐标原点O,乙分子位于x轴上,甲分子对乙分子的作用力与两分子间距离的关系如图中曲线所示,F>0为斥力,F<0为引力,a、b、c、d为x轴上四个特定的位置.现把乙分子从a处静止释放,则( ) A.乙分子从a到b做加速运动,由b到c做减速运动 B.乙分子由a到c做加速运动,到达c时速度最大 C.乙分子由a到b的过程中,两分子间的分子势能一直增加 D.乙分子由b到d的过程中,两分子间的分子势能一直增加
|
|
如图所示,足够长水平面的A点左侧光滑、右侧粗糙。宽度为r的物块P带有半径为r的四分之一光滑圆弧,圆弧的最低点切线水平,距地面的高度为1.5r,静止放在A点左侧适当位置。现让小球Q从物块P的圆弧最高点由静止释放,当小球Q落地的瞬间,物块P刚好与静止放在A点的小物块R发生弹性正碰,碰后小物块R运动的最远点C与A点的距离为3r 。已知P、Q、R的质量分别为6m、3m、2m,重力加速度为g,物块P、R碰撞过程时间很短,发生的位移不计,小球Q、物块R大小不计,求: (1)小球Q离开P时的速度大小; (2)小物块R与A点右侧水平面间的动摩擦因数; (3)小球Q落地点B与A点的距离。
|
|
某宇航员驾驶宇宙飞船到达某未知星球表面,他将一个物体以的速度从的高度水平抛出,测得落到星球表面A时速度与水平地面的夹角为。已知该星球半径是地球半径的2倍,地球表面重力加速度。则: (1)该星球表面的重力加速度是多少? (2)该星球的质量是地球的几倍?
|
|
在用高级沥青铺设的高速公路上,汽车的设计时速为108km/h,汽车在这种路面上行驶时,它的轮胎与地面的最大静摩擦力等于车重的0.6倍,重力加速度g=10m/s2.则: (1)如果汽车在这种高速公路的水平弯道上拐弯,其弯道的最小半径是多少? (2)事实上在高速公路的拐弯处,路面造得外高内低,路面与水平面间的夹角为θ,且;而拐弯路段的圆弧半径R=250m。若要使车轮与路面之间的侧向摩擦力等于零,那么,车速v应为多少?
|
|
如图甲所示,在用打点计时器验证机械能守恒定律的实验中,使质量为m=1.0kg的重物从静止开始自由下落,打点计时器在纸带上打出一系列的点,选取一条符合实验要求的纸带如图乙所示。O为打下的第一个点A、B、C为从合适位置开始选取的三个连续点(其他点未画出)。已知打点计时器每隔0.02s打一个点,当地的重力加速度为g=9.8。那么: (1)为验证机械能是否守恒,需要比较重物下落过程中任意两点间的______(选填番号) A.动能变化量与重力势能变化量 B.速度变化量和重力势能变化量 C.速度变化量和高度变化量 (2)纸带的________端(选填“左”或“右”)与重物相连; (3)从打O点到打B点的过程中,重物重力势能的减少量ΔEP=____J,动能增加量ΔEk=____J.(结果取两位有效数字)
|
|
某同学在用频闪照相“研究平抛运动”实验中,记录了小球运动途中的A、B、C三点的位置,取A点为坐标原点,得到如图所示坐标。取g=10,则闪光频率是____Hz,小球做平抛运动的初速度v0=__m/s,小球从开始做平抛运动到B点所用的时间tB=___s
|
|
水平光滑直轨道ab与半径为R的竖直半圆形光滑轨道bc相切,一小球以初速度沿直线轨道向右运动,如图所示,小球进入圆形轨道后刚好能通过c点,然后小球做平抛运动落在直轨道上的d点,重力加速度为 A.小球到达c点的速度为 B.小球到达b点时对轨道的压力为 C.小球在直轨道上的落点d与b点距离为 D.小球从c点落到d点所需时间为
|
|
假设将来一艘飞船靠近火星时,经历如图所示的变轨过程,已知万有引力常量为 A.飞船在轨道Ⅱ上运动到P点的速度小于在轨道Ⅰ运动到P点的速度 B.若轨道Ⅰ贴近火星表面,测出飞船在轨道Ⅰ运动的周期,就可以推知火星的密度 C.飞船在轨道Ⅰ上运动到P点时的加速度大于飞船在轨道Ⅱ上运动到P点时的加速度 D.飞船在轨道Ⅱ上运动时的周期大于在轨道Ⅰ上运动时的周期
|
|
如图所示为一皮带传动装置,右轮的半径为 A.a点与c点的角速度大小相等 B.b点与c点的角速度大小相等 C.b点与c点的线速度大小相等 D.a点与c点的向心加速度大小相等
|
|
如图所示,用一根结实的长度为 A.角速度大小为 B.转速大小为 C.向心加速度大小为 D.向心力大小为
|
|