如图所示,横截面半径为r的圆柱体固定在水平地面上.一个质量为m的小滑块P从截面最高点A处以滑下.不计任何摩擦阻力. (1)试对小滑块P从离开A点至落地的运动过程做出定性分析; (2)计算小滑块P离开圆柱面时的瞬时速率和落地时的瞬时速率. |
|
已知地球的半径为6.4×106 m,地球自转的角速度为7.29×10-5 rad/s,地面的重力加速度为9.8m/s2,在地球表面发射卫星的第一宇宙速度为7.9×103 m/s,第三宇宙速度为16.7×103 m/s,月球到地球中心的距离为3.84×108 m.假设地球上有一棵苹果树长到了接近月球那么高,则当苹果脱离苹果树后,将( ) A.落向地面 B.成为地球的同步“苹果卫星” C.成为地球的“苹果月亮” D.飞向茫茫宇宙 |
|
如图所示,一轻质细绳的下端系一质量为m的小球,绳的上端固定于O点.现用手将小球拉至水平位置(绳处于水平拉直状态),松手后小球由静止开始运动.在小球摆动过程中绳突然被拉断,绳断时与竖直方向的夹角为α.已知绳能承受的最大拉力为F,若想求出cosα的值,你有可能不会求解,但是你可以通过一定的物理分析,对下列结果的合理性做出判断.根据你的判断cosα值应为( ) A. B. C. D. |
|
如图所示,甲、乙两运动员同时从水流湍急的河岸下水游泳,甲在乙的下游且速度大于乙.欲使两人尽快在河中相遇,则应选择的游泳方向是( ) A.甲沿虚线、乙偏离虚线向上游方向 B.乙沿虚线、甲偏离虚线向上游方向 C.若甲乙都沿虚线方向游泳,则不能在同一点相遇 D.都沿虚线方向朝对方游 |
|
如图所示,质量m=1kg可看成质点的小物块静止在水平桌面上,且与桌子边缘相距0.4m,物块与桌面间的动摩擦因数为μ=0.4.现用F=5N的水平力向右推小物块,为了使它从桌子上掉下,则力F的作用时间至少为:( ) A.0.8s B.1.6s C.s D.s |
|
如地球质量M可由表达式M=求出,式中G为引力常量,a的单位是m/s,b是a的幂次,c的单位是m/s2,以下判断正确的是( ) A.a是同步卫星绕地球运动的速度,b=4,c是地球表面重力加速度 B.a是第一宇宙速度,b=4,c是地球表面重力加速度 C.a是赤道上物体的自转速度,b=2,c是地球表而重力加速度 D.a是月球绕地球运动的速度,b=4,c是月球表面的自由落体加速度 |
|
随着太空技术的飞速发展,地球上的人们登陆其它星球成为可能,假设未来的某一天,宇航员登上某一星球后,测得该星球表面的重力加速度是地球表面重力加速度的2倍,而该星球的平均密度与地球的差不多,则该星球质量大约是地球质量的( ) A.0.5倍 B.2倍 C.4倍 D.8倍 |
|
某科技小组进行了如下探究实验:如图所示,将一小球先后以相同初速度v分别冲向光滑斜面AB、光滑曲面AEB、光滑圆弧轨道ACD,已知圆弧轨道的顶点C与斜面、曲面顶点B等高,均为h.则下列结论中应写入探究报告的是( ) A.若小球沿斜面能到达顶点B,则沿曲面AEB一定能到达顶点B B.若小球沿斜面能到达顶点B,则沿圆弧轨道ACD一定能到达顶点C C.若小球沿圆弧轨道ACD能到达顶点C,则沿斜面一定能到达顶点B D.若小球沿圆弧轨道ACD能到达顶点C,则沿曲面AEB一定能到达顶点B |
|
如图所示,螺旋形光滑轨道竖直放置,P、Q为对应的轨道最高点,一个小球以一定速度沿轨道切线方向进入轨道,且能过轨道最高点P,则下列说法中正确的是( ) A.轨道对小球做正功,小球的线速度vP>vQ B.轨道对小球不做功,小球的角速度ωP<ωQ C.小球的向心加速度aP>aQ D.轨道对小球的压力FP>FQ |
|
如图所示,一圆转盘可在水平面内匀速转动,沿半径方向有两个物体用轻绳连接,两物体质量相等,且与转盘间的动摩擦因数相同,当圆盘转速加快到两物体刚好还未发生滑动时,某一时刻剪断绳子,则两物体的运动情况是( ) A.两物体均沿切线方向滑出转盘 B.两物体均沿半径方向滑出转盘 C.两物体仍随转盘一起做匀速圆周运动,不会发生滑动 D.A仍随转盘一起做匀速圆周运动,B发生滑动 |
|