一理想变压器原、副线圈匝数比,原线圈与正弦交变电源连接,输入电压u随时间t的变化规律如图所示,副线圈仅接入一个10Ω的电阻,则 ( ) A.流过电阻的最大电流是10 A B.与电阻并联的电压表的示数是141V C.变压器的输入功率是1×l03 W D.在交变电流变化的一个周期内,电阻产生的焦耳热是2×103J
|
|
如图所示,在x>0的区域内存在匀强磁场,磁场垂直于图中的Oxy平面,方向指向纸外,原点O处有一离子源,沿各个方向射出质量与速率乘积mv相等的同价负离子,对于进入磁场区域的离子,它们在磁场中做圆弧运动的圆心所在的轨迹,可用下图给出的四个半圆中的一个来表示,其中正确的是 ( )
|
|
水平抛出的小球,某时刻的速度方向与水平方向的夹角为,再过秒速度方向与水平方向的夹角为,忽略空气阻力,则小球初速度的大小为 ( ) A. B. C. D.
|
|
如图所示,小车沿水平面做直线运动,小车内光滑底面上有一物块被压缩的弹簧压向左壁,小车向右加速运动。若小车的向右加速度增大,则车左壁受物块的压力F1和车右壁受弹簧的压力F2的大小变化是 ( A.F1不变,F2变大 B.F1变大,F2不变 C.F1、F2都变大 D.F1变大,F2减小
|
|
我国已于2011年9月末发射“天宫一号”目标飞行器,2011年11月3日发射“神舟八号”飞船并与“天宫一号”成功实现对接。某同学为此画出“天宫一号”和“神舟八号”绕地球做匀速圆周运动的假想图如图所示,A代表“天宫一号”,B代表“神舟八号”,虚线为各自的轨道。由此假想图,可以判定 ( ) A.“天宫一号”的运行速率小于“神舟八号”的运行速率 B.“天宫一号”的周期小于“神舟八号”的周期 C.“天宫一号”所需的向心力小于“神舟八号”所需的向心力 D.“神舟八号”适当加速有可能与“天宫一号”实现对接
|
|
从地面以一定的速度竖直向上抛出一小球,以抛出点为计时起点,小球上升到最高点的时刻为t1,下落到抛出点的时刻为t2。若空气阻力的大小恒定,则在下图中能正确表示被抛出物体的速率v随时间t的变化关系的图线是 ( )
|
|
下列有关物理学家和他们的贡献叙述正确的是 ( ) A.伽利略认为物体的运动不需要力的维持 B.安培发现了电流的磁效应 C.楞次建立了电磁感应定律 D.牛顿发现了万有引力定律并测出了引力常量
|
|
如图甲所示,在光滑绝缘的水平桌面上建立一xoy坐标系,平面处在周期性变化的电场和磁场中,电场和磁场的变化规律如图乙所示(规定沿+y方向为电场强度的正方向,竖直向下为磁感应强度的正方向).在t=0时刻,一质量为10g、电荷量为0.1C的带电金属小球自坐标原点O处,以v0=2m/s的速度沿x轴正方向射出.已知E0=0.2N/C、B0=0.2T.求: 1.t=1s末速度的大小和方向; 2.1s~2s内,金属小球在磁场中做圆周运动的半径和周期; 3.在给定的坐标系中,大体画出小球在0到6S内运动的轨迹示意图。 4.6s内金属小球运动至离x轴最远点的位置坐标.
|
|
如图所示,某空间内存在着正交的匀强电场和匀强磁场,电场方向水平向右,磁场方向垂直于纸面向里。一段光滑绝缘的圆弧轨道AC固定在场中,圆弧所在平面与电场平行,圆弧的圆心为O,半径R=1.8m,连线OA在竖直方向上,圆弧所对应的圆心角=37°。现有一质量m=3.6×10-4kg、电荷量q=9.0×10-4C的带正电的小球(视为质点),以v0=4.0m/s的速度沿水平方向由A点射入圆弧轨道,一段时间后小球从C点离开圆弧轨道。小球离开圆弧轨道后在场中做匀速直线运动。不计空气阻力,sin37°=0.6,cos37°=0.8。求: 1.匀强电场场强E的大小; 2.小球刚射入圆弧轨道瞬间对轨道压力的大小。
|
|
如图所示,在某空间实验室中,有两个靠在一起的等大的圆柱形区域,分别存在着等大反向的匀强磁场,磁感应强度B=0.10 T,磁场区域半径r= m,左侧区圆心为O1,磁场向里,右侧区圆心为O2,磁场向外,两区域切点为C.今有质量m=3.2×10-26 kg、带电荷量q=1.6×10-19 C的某种离子,从左侧区边缘的A点以速度v=106 m/s正对O1的方向垂直射入磁场,它将穿越C点后再从右侧区穿出.求: 1.该离子通过两磁场区域所用的时间. 2.离子离开右侧区域的出射点偏离最初入射方向的侧移距离多大?(侧移距离指垂直初速度方向上移动的距离).
|
|