满分5 > 初中数学试题 >

某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低...

某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.

(1)求出y与x的函数关系式;

(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?

(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?

 

(1)y=﹣2x+80;(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元. 【解析】 试题(1)待定系数法列方程组求一次函数解析式. (2)列一元二次方程求解. (3)总利润=单件利润销售量:w=(x-20)(-2x+80),得到二次函数,先配方,在定义域上求最值. 试题解析: (1)设y与x的函数关系式为y=kx+b. 把(22,36)与(24,32)代入,得 解得 ∴y=-2x+80. (2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x元,根据题意,得 (x-20)y=150,即(x-20)(-2x+80)=150. 解得x1=25,x2=35(舍去). 答:每本纪念册的销售单价是25元. (3)由题意,可得w=(x-20)(-2x+80)=-2(x-30)2+200. ∵售价不低于20元且不高于28元, 当x<30时,y随x的增大而增大, ∴当x=28时,w最大=-2×(28-30)2+200=192(元). 答:该纪念册销售单价定为28元时,能使文具店销售该纪念册所获利润最大,最大利润是192元.  
复制答案
考点分析:
相关试题推荐

如图,二次函数的图象与x轴交于AB两点,与y轴交于点C,且,则下列结论:其中正确结论的序号是______

 

查看答案

如图,在平面直角坐标系中,点A在抛物线上运动,过点A轴于点C,以AC为对角线作矩形ABCD,连接BD,则对角线BD的最小值为______

 

查看答案

已知抛物线y=a(x+1)2经过点,则______填“”,“”,或“

 

查看答案

已知m是关于x的方程的一个根,则______

 

查看答案

菱形的两条对角线长分别是方程的两实根,则菱形的面积为______

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.