阅读与探究:
在第六章《实数》中,我们学习了平方根和立方根.下表是平方根和立方根的部分内容.
| 平方根 | 立方根 |
定义 | 一般地,如果一个数的平方等于 | 一般地,如果一个数的立方等于 |
运算 | 求一个数 | 求一个数 |
特征 | 正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根. | 正数的立方根是正数;0的立方根是0;负数的立方根是负数. |
表示与读法 | 正数 | 一个数 |
今天我们类比平方根和立方根的学习方法学习四次方根.
(1)填表与定义
①填表
1 | 16 | |
|
②结合上述①中表格情况,类比平方根和立方根的定义,给四次方根下定义:
____________________________________________________________________________________________
____________________________________________________________________________________________
(2)思考与归纳
求一个数的四次方根的运算叫做开四次方.开四次方和四次方运算互为逆运算.
①探究:
81的四次方根是_______________;的四次方根是________________________;
0的四次方根是________________;_____________(填“有”或“没有”)四次方根.
②归纳:
根据上述①中情况,类比平方根和立方根的特征,归纳四次方根的特征:
____________________________________________________________________________________________
____________________________________________________________________________________________
③总结:
我们归纳四次方根的特征时,分了正数、0、负数三类进行研究,这种思想叫_____________;(填正确选项的代码)
四次方根的特征是由81,,0等这几个特殊数的四次方根的特征归纳出来的,这种思想叫__________.(填正确选项的代码)
A.类比思想 B.分类讨论思想
C.由一般到特殊的思想 D.由特殊到一般的思想
(3)巩固与应用
类似于平方根和立方根,一个数的四次方根,用符号“”表示,读作“正、负四次根号”,其中是被开方数,4是根指数.例如表示16的四次方根,.
①______________(将结果直接填到横线上).
②比较大小:_________________(填“”或“”或“”).
如图,在平面直角坐标系中,已知点,,,点是三角形边上任意一点,三角形经过平移后得到三角形,点的对应点为.
(1)直接写出点的坐标______________.
(2)画出三角形平移后的三角形.
(3)在轴上是否存在一点,使三角形的面积等于三角形面积的,若存在,请求出点的坐标;若不存在,请说明理由.
小丽想用一块面积为的正方形纸片,沿着边的方向裁出一块面积为的长方形纸片,使它的长宽之比为4:3,他不知道能否裁的出来,正在发愁,请你用所学知识帮小丽分析,能否裁出符合要求的纸片.
如图,四边形,点是边延长线上一点,点是边延长线上一点,连接,分别交和于点和点.已知,.求证:,并写出每一步的根据.
(1)计算:
(2)计算:
(3)已知,求的值.
如图,已知,,,则__________.