如图,已知二次函数的图象与轴交于、两点(点在点的左侧),与轴交于点,且,顶点为.
(1)求二次函数的解析式;
(2)点为线段上的一个动点,过点作轴的垂线,垂足为,若,四边形的面积为,求关于的函数解析式,并写出的取值范围;
(3)探索:线段上是否存在点,使为等腰三角形?如果存在,求出点的坐标;如果不存在,请说呀理由.
观察猜想
(1)如图①,在中,,,点与点重合,点在边上,连接,将线段绕点顺时针旋转90°得到线段,连接,与的位置关系是________,________;
探究证明
(2)在(1)中,如果将点沿射线方向移动,使,其余条件不变,如图②判断与的位置关系,并求的值,请写出你的理由或计算过程;
拓展延伸
(3)如图③,在中,,,点在的延长线上,,连接,将线段绕点顺时针旋转,旋转角,连接,则的值是多少?请用含有,的式子直接写出结论.
小明购买A,B两种商品,每次购买同一种商品的单价相同,具体信息如下表:
次数 | 购买数量(件 | 购买总费用(元 | |
A | B | ||
第一次 | 2 | 1 | 55 |
第二次 | 1 | 3 | 65 |
根据以上信息解答下列问题:
(1)求A,B两种商品的单价;
(2)若第三次购买这两种商品共12件,且A种商品的数量不少于B种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.
如图,一次函数与反比例函数的图象交于,两点.过点作轴,垂足为,且.
(1)求一次函数与反比例函数的解析式.
(2)根据所给条件,请直接写出不等式的解集;
(3)若,是函数图象上的两点,且,求实数的取值范围.
如图为某区域部分交通线路图,其中直线,直线与直线、、都垂直,垂足分别点、点和点,(高速路右侧边缘),上的点位于点的北偏东方向上,且千米,上的点位于点的北偏东方向上,且,千米.点和点是城际线上的两个相邻的站点.
(1)求和之间的距离;
(2)若城际火车平均时速为千米/小吋,求市民小强乘坐城际火车从站点到站点需要多少小时?(结果用分数表示)
如图,钝角中,,,是边上一点,以为圆心,为半径作,交边于点,交边于点,过作的切线交边于点.
(1)求证.
(2)连结,若且,求的半径长.