(本题满分12分)阅读下列材料,解决数学问题.圆锥曲线具有非常漂亮的光学性质,被人们广泛地应用于各种设计之中,比如椭圆镜面用来制作电影放映机的聚光灯,抛物面用来制作探照灯等,它们的截面分别是椭圆和抛物线.双曲线也具有非常好的光学性质,从双曲线的一个焦点发出的光线,经过双曲线反射后,反射光线是发散的,它们好像是从另一个焦点射出的一样,如图(1)所示.反比例函数的图像是以直线为轴,以坐标轴为渐近线的等轴双曲线,记作C.
(Ⅰ)求曲线C的离心率及焦点坐标;
(Ⅱ)如图(2),从曲线C的焦点F处发出的光线经双曲线反射后得到的反射光线与入射光线垂直,求入射光线的方程.
(1) (2)
(本题满分12分)
设为非零实数,
(Ⅰ)写出并判断是否为等比数列.若是,给出证明;若不是,说明理由;
(Ⅱ)设,求数列的前n项和.
(本题满分12分)已知圆x2+y2+x-6y+m=0和直线x+2y-3=0交于P、Q两点.
(Ⅰ)求实数m的取值范围;
(Ⅱ)求以PQ为直径且过坐标原点的圆的方程.
(本题满分10分)一座抛物线拱桥在某时刻水面的宽度为52米,拱顶距离水面6.5米.
(Ⅰ)建立如图所示的平面直角坐标系xOy,试求拱桥所在抛物线的方程;
(Ⅱ)若一竹排上有一4米宽6米高的大木箱,问此木排能否安全通过此桥?
(本题满分10分)设函数,其中.
(Ⅰ)当时,求不等式的解集;
(Ⅱ)若不等式的解集为,求a的值.
已知圆C的方程为,定点,直线有如下两组论断:
由第Ⅰ组论断作为条件,第Ⅱ组论断作为结论,写出所有可能成立的命题
(将命题用序号写成形如pq的形式) ▲ .