满分5 > 高中数学试题 >

如图,在三棱锥P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠B...

manfen5.com 满分网如图,在三棱锥P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.
(1)求证:BC⊥平面PAC;
(2)当D为PB的中点时,求AD与平面PAC所成的角的正弦值;
(3)是否存在点E使得二面角A-DE-P为直二面角?并说明理由.
(1)欲证BC⊥平面PAC,根据直线与平面垂直的判定定理可知只需证BC与平面PAC内两相交直线垂直,根据线面垂直的性质可知PA⊥BC,而AC⊥BC,满足定理所需条件; (2)根据DE⊥平面PAC,垂足为点E,则∠DAE是AD与平面PAC所成的角.在Rt△ADE中,求出AD与平面PAC所成角即可; (3)根据DE⊥AE,DE⊥PE,由二面角的平面角的定义可知∠AEP为二面角A-DE-P的平面角,而PA⊥AC,则在棱PC上存在一点E,使得AE⊥PC,从而存在点E使得二面角A-DE-P是直二面角. 【解析】 (1)∵PA⊥底面ABC,∴PA⊥BC. 又∠BCA=90°,∴AC⊥BC,∴BC⊥平面PAC. (2)∵D为PB的中点,DE∥BC, ∴DE=BC. 又由(1)知,BC⊥平面PAC, ∴DE⊥平面PAC,垂足为点E, ∴∠DAE是AD与平面PAC所成的角. ∵PA⊥底面ABC,∴PA⊥AB. 又PA=AB,∴△ABP为等腰直角三角形, ∴AD=AB. 在Rt△ABC中,∠ABC=60°,∴BC=AB, ∴在Rt△ADE中,sin∠DAE===, 即AD与平面PAC所成角的正弦值为. (3)∵DE∥BC,又由(1)知,BC⊥平面PAC, ∴DE⊥平面PAC. 又∵AE⊂平面PAC,PE⊂平面PAC, ∴DE⊥AE,DE⊥PE, ∴∠AEP为二面角A-DE-P的平面角. ∵PA⊥底面ABC,∴PA⊥AC, ∴∠PAC=90°,∴在棱PC上存在一点E,使得AE⊥PC. 这时,∠AEP=90°, 故存在点E使得二面角A-DE-P是直二面角.
复制答案
考点分析:
相关试题推荐
盒子中有大小相同的球10个,其中标号为1的球3个,标号为2的球4个,标号为5的球3个,第一次从盒子中任取1个球,放回后第二次再任取1个球(假设取到每个球的可能性都相同).记第一次与第二次取到球的标号之和为ξ.
(Ⅰ)求随机变量ξ的分布列;
(Ⅱ)求随机变量ξ的期望Eξ.
查看答案
已知函数manfen5.com 满分网,且给定条件p:“manfen5.com 满分网”,
(1)求f(x)的最大值及最小值
(2)若又给条件q:“|f(x)-m|<2“且p是q的充分条件,求实数m的取值范围.
查看答案
在平面直角坐标系中,横、纵坐标均为整数的点叫做格点.若函数y=f(x)的图象恰好经过k个格点,则称函数y=f(x)为k阶格点函数.已知下列函数:①manfen5.com 满分网;②f(x)=ex+1;③manfen5.com 满分网;④manfen5.com 满分网.则其中为一阶格点函数的序号为    .(写出所有正确命题的序号) 查看答案
设直线x-my-1=0与圆(x-1)2+(y-2)2=4相交于A,B两点,且弦AB的长为manfen5.com 满分网,则实数m的值是    查看答案
manfen5.com 满分网如图,在半径为3的球面上有A、B、C三点,∠ABC=90°,BA=BC,球心O到平面ABC的距离是manfen5.com 满分网,则B、C两点的球面距离是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.