满分5 > 高中数学试题 >

如图,在四棱锥中,底面,,,,. (1)求证:; (2)若,求平面和平面所成的角...

如图,在四棱锥中,底面.

1)求证:

2)若,求平面和平面所成的角(锐角)的余弦值.

 

(1)证明见解析;(2) 【解析】 (1)取的中点,连接,根据线面垂直的判定定理,证明平面,进而可得线线垂直; (2)以为坐标原点,分别以,,所在直线为轴,轴,轴建立空间直角坐标系,设,根据题中条件,分别求出两平面的法向量,求出两向量夹角的余弦值,即可得出结果. (1)证明:取的中点,连接, 因为,所以, 又因为,所以四边形是平行四边形. 因为所以四边形是矩形. 所以. 又 所以. 所以是直角三角形,即. 又底面,底面, 所以. 又平面,平面,且. 所以平面. 又平面, 所以. (2)如图,以为坐标原点,分别以,,所在直线为轴,轴,轴建立空间直角坐标系, 设,则, 由(1)知,,. , 所以. 所以 所以. 设平面的法向量为,则 所以,即, 取,则,, 所以平面的一个法向量为. 又平面的一个法向量为 所以 所以平面和平面所成的角(锐角)的余弦值为.
复制答案
考点分析:
相关试题推荐

已知数列为公差不为0的等差数列,且成等比数列.

1)求数列的通项公式;

2)设为数列的前n项和,,求数列的前n项和.

 

查看答案

中,分别为内角的对边,且满.

1)求的大小;

2)再在①,②,③这三个条件中,选出两个使唯一确定的条件补充在下面的问题中,并解答问题.________________,求的面积.

 

查看答案

在平面直角坐标系中,为直线上在第三象限内的点,,以线段为直径的圆为圆心)与直线相交于另一个点,则圆的标准方程为________.

 

查看答案

在四面体中,,且,则该四面体体积的最大值为________,该四面体外接球的表面积为________.

 

查看答案

已知,则________.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.