在平面几何中可利用等积变换求三角形的面积,通常有两种方案:一是同一三角形选不同的边作为底边所得面积相等;二是不同的三角形利用“等底同高”或“等高同底”得到三角形面积相等.在空间图形中能否借鉴平面几何的“等积变换”求三棱锥的体积?如图所示,正方体
,的棱长为1,E为线段
上的一点,在求三棱锥
的体积时,随着E点的变化,底面
的面积在变化,点A到底面的距离也在变化,导致体积难求.

(1)能否利用“等体积转换法”求解三棱锥
的体积?
(2)求三棱锥
的体积关键是求高,即求E点到平面
的距离,如何求出E点到平面
的距离?
(3)求出三棱锥
的体积.
(理)已知数列
满足
(
),首项
.
(1)求数列
的通项公式;
(2)求数列
的前
项和
;
(3)数列
满足
,记数列
的前
项和为
,
是△ABC的内角,若
对于任意
恒成立,求角
的取值范围.
已知函数
,若在区间
内有且只有一个实数
,使得
成立,则称函数
在区间
内具有唯一零点.
(1)判断函数
在区间
内是否具有唯一零点,说明理由:
(2)已知向量
,
,
,证明
在区间
内具有唯一零点.
(3)若函数
在区间
内具有唯一零点,求实数
的取值范围.
如图,A、B是海岸线OM、ON上两个码头,海中小岛有码头Q到海岸线OM、ON的距离分别为
、
,测得
,
,以点O为坐标原点,射线OM为x轴的正半轴,建立如图所示的直角坐标系,一艘游轮以
小时的平均速度在水上旅游线AB航行(将航线AB看作直线,码头Q在第一象限,航线BB经过点Q).

(1)问游轮自码头A沿
方向开往码头B共需多少分钟?
(2)海中有一处景点P(设点P在
平面内,
,且
),游轮无法靠近,求游轮在水上旅游线AB航行时离景点P最近的点C的坐标.
设点E,F分别是棱长为2的正方体
的棱AB,
的中点.如图,以C为坐标原点,射线CD、CB、
分别是x轴、y轴、z轴的正半轴,建立空间直角坐标系.

(1)求向量
与
的数量积;
(2)若点M,N分别是线段
与线段
上的点,问是否存在直线MN,
平面ABCD?若存在,求点M,N的坐标;若不存在,请说明理由.
(理)已知
分别是椭圆
(其中
)的左、右焦点,椭圆
过点
且与抛物线
有一个公共的焦点.
(1)求椭圆
的方程;
(2)过椭圆
的右焦点且斜率为1的直线
与椭圆交于
、
两点,求线段
的长度.
