已知椭圆:的离心率为,过的左焦点做轴的垂线交椭圆于、两点,且.
(1)求椭圆的标准方程及长轴长;
(2)椭圆的短轴的上下端点分别为,,点,满足,且,若直线,分别与椭圆交于,两点,且面积是面积的5倍,求的值.
平行四边形所在的平面与直角梯形所在的平面垂直,,,且,,,为的中点.
(1)求证:平面;
(2)求证:;
(3)若直线上存在点,使得,所成角的余弦值为,求与平面所成角的大小.
为了解学生自主学习期间完成数学套卷的情况,一名教师对某班级的所有学生进行了调查,调查结果如下表.
(1)从这班学生中任选一名男生,一名女生,求这两名学生完成套卷数之和为4的概率?
(2)若从完成套卷数不少于4套的学生中任选4人,设选到的男学生人数为,求随机变量的分布列和数学期望;
(3)试判断男学生完成套卷数的方差与女学生完成套卷数的方差的大小(只需写出结论).
设函数,其中.已知.
(Ⅰ)求;
(Ⅱ)将函数的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数的图象,求在上的最小值.
已知函数.
(1)的零点是______;
(2)若的图象与直线有且只有三个公共点,则实数的取值范围是______.
已知非零向量,满足,.若,则实数的值为______.