函数(e是自然对数的底数)在点(0,1)处的切线方程是( )
A. B. C. D.
在平面直角坐标系中,椭圆的离心率为,直线被椭圆截得的线段长为.
(1)求椭圆的方程;
(2)过原点的直线与椭圆交于两点(不是椭圆的顶点),点在椭圆上,且,直线与轴轴分别交于两点.
①设直线斜率分别为,证明存在常数使得,并求出的值;
②求面积的最大值.
设数列、都有无穷项,的前项和为,是等比数列,且.
(1)求和的通项公式;
(2)记,求数列的前项和为.
如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.
(1)证明:BE⊥平面EB1C1;
(2)若AE=A1E,求二面角B–EC–C1的正弦值.
某企业用180万元购买一套新设备,该套设备预计平均每年能给企业带来100万元的收入,为了维护设备的正常运行,第一年需要各种维护费用10万元,且从第二年开始,每年比上一年所需的维护费用要增加10万元
(1)求该设备给企业带来的总利润(万元)与使用年数的函数关系;
(2)试计算这套设备使用多少年,可使年平均利润最大?年平均利润最大为多少万元?
已知椭圆的长轴长为,短轴长为.
(1)求椭圆方程;
(2)过作弦且弦被平分,求此弦所在的直线方程及弦长.