设抛物线,满足,过点作抛物线的切线,切点分别为.
(1)求证:直线与抛物线相切;
(2)若点坐标为,点在抛物线的准线上,求点的坐标;
(3)设点在直线上运动,直线是否恒过定点?若恒过定点,求出定点坐标;若不存在,请说明理由;
已知椭圆,过点的直线与椭圆交于两点(点在点的右侧),与轴交于点;
(1)当且时,求点的坐标;
(2)当时,设,求证:为定值,并求出该值.
如图,某野生保护区监测中心设置在点处,正西、正东、正北处有三个监测点,且,一名野生动物观察员在保护区遇险,发出求救信号,三个监测点均收到求救信号,点接收到信号的时间比点接收到信号的时间早秒(注:信号每秒传播千米).
(1)以为原点,直线为轴建立平面直角坐标系(如题),根据题设条件求观察员所有可能出现的位置的轨迹方程;
(2)若已知点与点接收到信号的时间相同,求观察员遇险地点坐标,以及与检测中心的距离;
(3)若点监测点信号失灵,现立即以监测点为圆心进行“圆形”红外扫描,为保证有救援希望,扫描半径至少是多少公里?
已知实系数一元二次方程的一根为(为虚数单位),另一根为复数.
(1)求复数,以及实数的值;
(2)设复数的一个平方根为,记在复平面上对应点分别为,求的值.
曲线,要使直线与曲线有四个不同的交点,则实数的取值范围是( )
A. B. C. D.
过抛物线的焦点作一条直线与抛物线相交于两点,它们的横坐标之和等于,则这样的直线( )
A.有且仅有一条 B.有且仅有两条 C.有无穷多条 D.不存在