满分5 > 高中数学试题 >

在平面直角坐标系中,已知曲线的参数方程为,以坐标原点为极点,轴正半轴为极轴建立极...

在平面直角坐标系中,已知曲线的参数方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)求曲线与曲线两交点所在直线的极坐标方程;

(2)若直线的极坐标方程为,直线轴的交点为,与曲线相交于两点,求的值.

 

(1);(2) 【解析】 (1)先将和化为普通方程,可知是两个圆,由圆心的距离判断出两者相交,进而得相交直线的普通方程,再化成极坐标方程即可;(2)先求出l的普通方程有,点,写出直线l的参数方程,代入曲线:,设交点两点的参数为,,根据韦达定理可得和,进而求得的值. (1) 曲线的普通方程为: 曲线的普通方程为:,即 由两圆心的距离,所以两圆相交, 所以两方程相减可得交线为,即. 所以直线的极坐标方程为. (2) 直线的直角坐标方程:,则与轴的交点为 直线的参数方程为,带入曲线得. 设两点的参数为, 所以,,所以,同号. 所以
复制答案
考点分析:
相关试题推荐

已知函数.

1)若是函数的一个极值点,试讨论的单调性;

2)若R上有且仅有一个零点,求的取值范围.

 

查看答案

某校为了了解篮球运动是否与性别相关,在高一新生中随机调查了40名男生和40名女生,调查的结果如下表:

 

喜欢

不喜欢

总计

女生

 

8

 

男生

20

 

 

总计

 

 

 

 

1)根据题意完成上面的列联表,并用独立性检验的方法分析,能否在犯错的概率不超过0.01的前提下认为喜欢篮球运动与性别有关?

2)从女生中按喜欢篮球运动与否,用分层抽样的方法抽取5人做进一步调查,从这5人中任选2人,求2人都喜欢篮球运动的概率.

附:

0.10

0.050

0.010

0.001

2.706

3.841

6.635

10.828

 

.

 

查看答案

已知四棱锥中,侧面是边长为2的正三角形,底面是菱形,点的中点.

(1)求证:

(2)求三棱锥的体积.

 

查看答案

中,内角对应的边分别为,且满足.

1)求

2)若的面积为,求的值.

 

查看答案

已知是递增的等差数列,且满足.

1)求数列的通项公式;

2)若,求数列的前项和的最小值.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.