已知平面平面ABC,P、P在平面ABC的同侧,二面角的平面角为钝角,Q到平面ABC的距离为,是边长为2的正三角形,,,.
(1)求证:面平面PAB;
(2)求二面角的平面角的余弦值.
设抛物线的焦点为F,准线为l,A为C上一点,已知以F为圆心,FA为半径的圆F交l于M.N点.
(1)若,的面积为,求抛物线方程;
(2)若A.M.F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到直线n、m距离的比值.
如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,,四边形BDEF是矩形,平面平面ABCD,,H是CF的中点.
(1)求证:平面BDEF;
(2)求直线DH与平面CEF所成角的正弦值;
在中,边上的高所在直线的方程为,的平分线所在直线方程为,若点的坐标为.
(1)求点和点的坐标;
(2)求边上的高所在的直线的方程.
已知命题,使成立,命题恒成立.
(1)若命题为真,求实数a的取值范围;
(2)若p或q为真,p且q为假,求实数a的取值范围.
存在实数,使得圆面恰好覆盖函数图象的最高点或最低点共三个,则正数k的取值范围是________.