满分5 > 高中数学试题 >

已知函数f(x)=x2,g(x)=x-1. (1)若∃x∈R使f(x)<b•g(...

已知函数f(x)=x2,g(x)=x-1.
(1)若∃x∈R使f(x)<b•g(x),求实数b的取值范围;
(2)设F(x)=f(x)-mg(x)+1-m-m2,且|F(x)|在[0,1]上单调递增,求实数m的取值范围.
(1)把∃x∈R使f(x)<b•g(x),转化为∃x∈R,x2-bx+b<0,再利用二次函数的性质得△=(-b)2-4b>0,解出实数b的取值范围; (2)先求得F(x)=x2-mx+1-m2,再对其对应方程的判别式分△≤0和当△>0两种情况,分别找到满足|F(x)|在[0,1]上单调递增的实数m的取值范围,最后综合即可. 【解析】 (1)由∃x∈R,f(x)<b•g(x),得∃x∈R,x2-bx+b<0, ∴△=(-b)2-4b>0,解得b<0或b>4, ∴实数b的取值范围是(-∞,0)∪(4,+∞); (2)由题设得F(x)=x2-mx+1-m2, 对称轴方程为,△=m2-4(1-m2)=5m2-4, 由于|F(x)|在[0,1]上单调递增,则有:  ①当△≤0即时,有,解得,  ②当△>0即或时,设方程F(x)=0的根为x1,x2(x1<x2), 若,则,有解得m≥2; 若,即,有x1<0,x2≤0;得F(0)=1-m2≥0,有-1≤m≤1, ∴; 综上所述,实数m的取值范围是[-1,0]∪[2,+∞).
复制答案
考点分析:
相关试题推荐
若函数y=f(x)是周期为2的偶函数,当x∈[2,3]时,f(x)=x-1.在y=f(x)的图象上有两点A、B,它们的纵坐标相等,横坐标都在区间[1,3]上,定点C的坐标为(0,a)(其中2<a<3),
(1)求当x∈[1,2]时,f(x)的解析式;
(2)定点C的坐标为(0,a)(其中2<a<3),求△ABC面积的最大值.
查看答案
manfen5.com 满分网“5•12”汶川大地震是华人心中永远的痛!在灾后重建中拟在矩形区域ABCD内建一矩形(与原方位一样)的汶川人民纪念广场(如图),另外AEF内部有一废墟作为文物保护区不能占用,经测量AB=100m,BC=80m,AE=30m,AF=20m,如何设计才能使广场面积最大?
查看答案
已知函数f(x)=x2-2ax+5(a>1).
(1)若f(x)的定义域和值域均是[1,a],求实数a的值;
(2)若f(x)在区间(-∞,2]上是减函数,且对任意的x1,x2∈[1,1+a],总有|f(x1)-f(x2)|≤9,求实数a的取值范围.
查看答案
是否存在实数a,使函数manfen5.com 满分网为奇函数,同时使函数manfen5.com 满分网为偶函数,证明你的结论.
查看答案
已知命题p:“∀x∈[1,2],manfen5.com 满分网x2-ln x-a≥0”与命题q:“∃x∈R,x2+2ax-8-6a=0”都是真命题,求实数a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.