一粒钢珠从静止状态开始自由下落,然后陷入泥潭中.若把在空中下落的过程称为过程Ⅰ,进入泥潭直到停住的过程称为过程Ⅱ,不计空气阻力,则(      )

A. 过程Ⅰ中钢珠动量的改变量等于全过程中重力的冲量

B. 过程Ⅱ中阻力的冲量等于过程Ⅰ和过程Ⅱ中重力的总冲量

C. 过程Ⅱ中钢珠克服阻力所做的功等于过程Ⅰ与过程Ⅱ中钢珠所减少的重力势能之和

D. 过程Ⅱ中损失的机械能等于过程Ⅰ中钢珠所增加的动能

 

如图所示,S1S2是两个相干波源,它们振动同步且振幅相同,实线和虚线分别表示在某一时刻它们所发出的波的波峰和波谷,关于图中所标的a、b、c、d四点,下列说法中正确的有(     )

A. 该时刻a质点振动最弱,bc质点振动最强,d质点振动既不是最强也不是最弱

B. 该时刻a质点振动最弱,bcd质点振动都最强

C. a质点的振动始终是最弱的, bcd质点的振动始终是最强

D. 再过T/4后的时刻abc、d三个质点都将处于各自的平衡位置

 

一质点做作简谐运动,其位移x与时间t的关系如图所示.由图可知,在t =4s时,质点的(    )

A. 速度为正的最大值,加速度为零

B. 速度为负的最大值,加速度为零

C. 速度为零,加速度为正的最大值

D. 速度为零,加速度为负的最大值

 

一质点做简谐运动,先后以相同的速度依次通过A、B两点,历时1s,质点通过B点后再经过1s又第2次通过B点,在这两秒钟内,质点通过的总路程为12cm,则质点的振动周期和振幅分别为  

A.3s,6cm       B.4s,6cm       C.4s,9cm       D.2s,8cm

 

干湿泡湿度计的湿泡温度计与干泡温度计的示数差距越大,表示(   )

A. 空气的绝对湿度越大

B. 空气中的水蒸气的实际压强离饱和程度越近

C. 空气的相对湿度越大

D. 空气中的水蒸气的绝对湿度离饱和程度越远

 

下述说法中正确的是(   )

A. 甲物体的温度比乙物体的温度高,则甲物体分子平均速率比乙物体分子平均速率大

B. 温度是分子平均动能的标志,温度升高,则物体的每一个分子的动能都增大

C. 当某物体的内能增加时,该物体的温度一定升高

D. 温度是分子平均动能的标志,温度越高,则分子平均动能越大

 

关于布朗运动,下列说法正确的是(  )

A. 布朗运动就是分子运动,布朗运动停止了,分子运动也会暂时停止

B. 布朗运动是无规则的,因此它说明了液体分子的运动也是无规则的

C. 微粒做布朗运动,充分说明了微粒内部分子是不停地做无规则运动的

D. 布朗运动的无规则性,是由于外界条件无规律的不断变化而引起的

 

阿伏加德罗常数为NA(mol-1),铝的摩尔质量为M(kg/mol),铝的密度为ρ(kg/m3),则下列说法不正确的是(  )

A. 1 kg铝所含原子数为ρNA

B. 1m3铝所含原子数为ρNA/M

C. 1个铝原子的质量为M/NA (kg)

D. 1个铝原子所占的体积为M/ρNA (m3)

 

如图所示,一轻质弹簧原长为2R,其一端固定在倾角为370的固定直轨道AC的底端A处,另一端位于直轨道上B处,弹簧处于自然伸长状态。直轨道与一半径为R的光滑圆弧轨道相切于C点,AC=7R,A、B、C、D均在同一竖直平面内。质量为m的小物块P自C点由静止开始下滑,最低到达E点(未画出),随后P沿轨道被弹回,最高到达F点,AF=4R。已知P与直轨道间的动摩擦因数μ=0.25,重力加速度大小为g。(取sin370=0.6,cos370=0.8)

(1)求P第一次运动到B点时速度的大小;

(2)求P运动到E点时弹簧的弹性势能;

(3)改变物块P的质量,将P推至E点,从静止开始释放。P到达圆轨道最高点D时对轨道的压力为重力的0.2倍,求P运动到D点时速度的大小和改变后小物块P的质量。

 

如图所示装置由AB、BC、CD三段轨道组成,轨道交接处均由很小的圆弧平滑连接,其中轨道AB、CD段是光滑的,水平轨道BC的长度x=5 m,轨道CD足够长且倾角θ=37°,A、D两点离轨道BC的高度分别为h1=4.30 m、h2=1.35 m.现让质量为m的小滑块自A点由静止释放.已知小滑块与轨道BC间的动摩擦因数为μ=0.5,重力加速度g10 m/s2,sin37°=0.6,cos37°=0.8.求:

(1)小滑块第一次到达D点时的速度大小;

(2)小滑块第一次与第二次通过C点的时间间隔;

(3)小滑块最终停止的位置距B点的距离.

 

节能混合动力车是一种可以利用汽油及所储存电能作为动力来源的汽车。有一质量m=1000kg的混合动力轿车,在平直公路上以速度v1=90km/h匀速行驶,发动机的输出功率为P=50kW。当驾驶员看到前方有80km/h的限速标志时,保持发动机功率不变,立即启动利用电磁阻尼带动的发电机工作给电池充电,使轿车做减速运动,运动L=72m后,速度变为v2=72km/h。此过程中发动机功率的用于轿车的牵引,用于供给发电机工作,发动机输送给发电机的能量最后有50%转化为电池的电能。假设轿车在上述运动过程中所受阻力保持不变。求

(1)轿车以90km/h的速度在平直公路上匀速行驶时,所受阻力f的大小;

(2)轿车从90km/h减速到72km/h过程中,电池获得的电能E

(3)轿车仅用上述减速过程中获得的电能E在同样的道路上以72km/h的速度能匀速行驶的距离Lʹ

 

如图所示,半径为R的半球形陶罐,固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O的对称轴OO′重合.转台以一定角速度ω匀速旋转,一质量为m的小物块落入陶罐内,经过一段时间后,小物块随陶罐一起转动且相对罐壁静止,它和O点的连线与OO′之间的夹角θ60°.重力加速度大小为g.

(1)ω=ω0,小物块受到的摩擦力恰好为零,求ω0

(2)ω=(1±k)ω0,且0<k<1,求小物块受到的摩擦力大小和方向.

 

在“探究功和速度变化关系”的实验中,甲同学直接将长木板放在水平桌面上进行橡皮筋拉小车实验(如图2所示);乙同学将长木板一端垫高(如图3所示),调整木块位置使得连接纸带的小车被轻推后恰好能在长木板上匀速下滑,然后进行橡皮筋拉小车实验。

①两同学中操作正确的是________同学(填“图1”或“图2”)。

②下列操作正确规范的是________。(本题只有一个选项是正确的)
A.打点计时器接直流电源       

B.先释放小车,再接通电源
C.需使用相同规格的橡皮筋       

D.改变橡皮筋条数后小车可从不同位置静止释放 

③通过正确操作得到的一条纸带应为图________(填“图3”或“图4”)。

 

某物理兴趣小组采用如图所示的装置深入研究平抛运动.质量分别为mA和mB的A、B小球处于同一高度,M为A球中心初始时在水平地面上的垂直投影.用小锤打击弹性金属片,使A球沿水平方向飞出,同时松开B球,B球自由下落.A球落到地面N点处,B球落到地面P点处.测得mA=0.04 kg,mB=0.05 kg,B球距地面的高度是1.225 m,M、N点间的距离为1.500 m,则B球落到P点的时间是________s,A球落地时的动能是________J.(忽略空气阻力,g取9.8 m/s2

 

如图所示,现有两个完全相同的可视为质点的物块都从静止开始运动,一个自由下落,一个沿光滑的固定斜面下滑,最终它们都到达同一水平面上,空气阻力忽略不计,则(  )

A. 重力做的功相等,重力做功的平均功率相等

B. 它们到达水平面上时的动能相等

C. 重力做功的瞬时功率相等

D. 它们的机械能都是守恒的

 

如图所示,劲度系数为k的轻弹簧的一端固定在墙上,另一端与置于水平面上质量为m的物体接触(未连接),弹簧水平且无形变。用水平力,缓慢推动物体,在弹性限度内弹簧长度被压缩了x0, 此时物体静止。撤去F后,物体开始向左运动,运动的最大距离为4x0。物体与水平面间的动摩擦因数为μ,重力加速度为g。则( )

A. 撤去F后,物体先做匀加速运动,再做匀减速运动

B. 撤去F后,物体刚运动时的加速度大小为

C. 物体做匀减速运动的时间为2

D. 物体开始向左运动到速度最大的过程中克服摩擦力做的功为

 

如图所示,相距l的两小球A、B位于同一高度hl、h均为定值).将A向B水平抛出的同时,B自由下落A、B与地面碰撞前后,水平分速度不变,竖直分速度大小不变、方向相反不计空气阻力及小球与地面碰撞的时间,则  ).

AA、B在第一次落地前能否相碰,取决于A的初速度

BA、B在第一次落地前若不碰,此后就不会相碰

CA、B不可能运动到最高处相碰

DA、B一定能相碰

 

如图所示,某同学用硬塑料管和一个质量为m的铁质螺丝帽研究匀速圆周运动,将螺丝帽套在塑料管上,手握塑料管使其保持竖直并在水平方向做半径为r的匀速圆周运动,则只要运动角速度合适,螺丝帽恰好不下滑,假设螺丝帽与塑料管间的动摩擦因数为μ,认为最大静摩擦力近似等于滑动摩擦力.则在该同学手转塑料管使螺丝帽恰好不下滑时,下述分析正确的是(  )

A. 螺丝帽受的重力与最大静摩擦力平衡

B. 螺丝帽受到杆的弹力方向水平向外,背离圆心

C. 此时手转动塑料管的角速度ω=

D. 若杆的转动加快,螺丝帽有可能相对杆发生运动

 

由光滑细管组成的轨道如图所示,其中AB段和BC段是半径为R的四分之一圆弧,轨道固定在竖直平面内.一质量为m的小球,从距离水平地面为H的管口D处静止释放,最后能够从A端水平抛出落到地面上.下列说法正确的是(  )

A.小球落到地面时相对于A点的水平位移值为

B.小球落到地面时相对于A点的水平位移值为

C.小球能从细管A端水平抛出的条件是H>2R

D.小球能从细管A端水平抛出的最小高度Hmin=R

 

 

一蹦极运动员身系弹性蹦极绳从水面上方的高台下落,到最低点时距水面还有数米距离.假定空气阻力可忽略,运动员可视为质点,下列说法错误的是(  )

A. 运动员到达最低点前重力势能始终减小

B. 蹦极绳张紧后的下落过程中,弹性力做负功,弹性势能增加

C. 蹦极过程中,运动员、地球和蹦极绳所组成的系统机械能守恒

D. 蹦极过程中,重力势能的改变与重力势能零点的选取有关

 

如图所示,用一根长杆和两个定滑轮的组合装置来提升重物M,长杆的一端放在地上通过铰链联结形成转轴,其端点恰好处于左侧滑轮正下方O点处,在杆的中点C处拴一细绳,绕过两个滑轮后挂上重物M.C点与O点距离为l,现在杆的另一端用力使其逆时针匀速转动,由竖直位置以角速度ω缓缓转至水平位置(转过了90°角),此过程中下列说法正确的是(  )

A. 重物M做匀速直线运动

B. 重物M做匀变速直线运动

C. 重物M的最大速度是ωl

D. 重物M的速度先减小后增大

 

某兴趣小组做一实验,用力传感器来测量小滑块在半圆形容器内来回滑动时对容器内壁的压力大小,且来回滑动发生在同一竖直平面内.实验时,他们把传感器与计算机相连,由计算机拟合出力的大小随时间变化的曲线,从曲线提供的信息,可以判断滑块约每隔t时间经过容器底一次;若滑块质量为0.2kg,半圆形容器的直径为50cm,则由图象可以推断滑块运动过程中的最大速度为vm.若取g=lO m/s2,则t和vm的数值为(  )

A. 1.0s   1.22m/s    B. 1.0s   2.0m/s    C. 2.0s   1.22m/s    D. 2.0s2.0m/s

 

如图所示的皮带传动装置中,A、B两轮半径分别为rA和rB,已知rA<rB,且皮带不打滑.在传动过程中,下列说法正确的是(  )

A. A、B两轮角速度相等

B. A、B两轮边缘线速度的大小相等

C. 大轮B边缘一点的向心加速度大于小轮A边缘一点的向心加速度

D. 同一轮上各点的向心加速度跟该点与轮心的距离成反比

 

如图所示,细线的一端固定于O点,另一端系一小球.在水平拉力作用下,小球以恒定速率在竖直平面内由A点运动到B点.在此过程中拉力的瞬时功率变化情况是(  )

A. 逐渐增大

B. 逐渐减小

C. 先增大,后减小

D. 先减小,后增大

 

从地面竖直上抛一个质量为m的小球,小球上升的最大高度为h.设上升和下降过程中空气阻力大小恒定为f.下列说法正确的是(  )

A. 小球上升的过程中动能减少了mgh

B. 小球上升和下降的整个过程中机械能减少了fh

C. 小球上升的过程中重力势能增加了mgh

D. 小球上升和下降的整个过程中动能减少了fh

 

如图所示是用以说明向心力和质量、半径之间关系的仪器,球PQ可以在光滑水平杆上无摩擦地滑动,两球之间用一条轻绳连接,mP2mQ.当整个装置绕中心轴以角速度ω匀速旋转时,两球离转轴的距离保持不变,则此时(  )

A. 两球均受到重力、支持力、绳的拉力和向心力四个力的作用

B. P球受到的向心力大于Q球受到的向心力

C. rP一定等于

D. 当ω增大时,P球将向外运动

 

如图,表面光滑的固定斜面顶端安装一定滑轮,小物块A、B用轻绳连接并跨过滑轮(不计滑轮的质量和摩擦).初始时刻,A、B处于同一高度并恰好处于静止状态.剪断轻绳后A下落、B沿斜面下滑,则从剪断轻绳到物块着地,两物块(  )

A. 速率的变化量不同

B. 机械能的变化量不同

C. 重力势能的变化量相同

D. 重力做功的平均功率相同

 

2013年4月4日至12日CCTV新闻频道播出《探潮亚马孙》节目,揭开亚马孙大潮的神秘面纱,在发生的大潮日,亚马孙河会出现长50公里,高五公尺的巨浪,是全世界最长,也最危险的海浪.为了拍摄大潮更近距离的视频,在拍摄过程中一个摄像机架在行驶在潮前的摩托艇上.摩托艇在某段时间内水平方向和竖直方向的位移分别为x=﹣2t2﹣6t、y=0.05t2+4t(t的单位是s,x、y的单位是m),则关于摩托艇在该段时间内的运动,下列说法正确的是(  )

A. 摩托艇在水平方向的分运动是匀减速直线运动

B. t=0时摩托艇的速度为0

C. 摩托艇的运动是匀变速曲线运动

D. 摩托艇运动的加速度大小为4m/s2

 

在一棵大树将要被伐倒的时候,有经验的伐木工人就会双眼紧盯着树梢,根据树梢的运动情形就能判断大树正在朝着哪个方向倒下,从而避免被倒下的大树砸伤.从物理知识的角度来解释,以下说法正确的是(  )

A. 树木开始倒下时,树梢的角速度较大,易于判断

B. 树木开始倒下时,树梢的线速度最大,易于判断

C. 树木开始倒下时,树梢的向心加速度较大,易于判断

D. 伐木工人的经验缺乏科学依据

 

如图所示,半径为R的半球形陶罐,固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O的对称轴OO′重合,转台以一定角速度ω匀速旋转,一质量为m的小物块落入陶罐内,经过一段时间后,小物块随陶罐一起转动且相对罐壁静止,它和O点的连线与OO′之间的夹角θ为60°.已知重力加速度大小为g,小物块与陶罐之间的最大静摩擦力大小为Ff= mg

1)若小物块受到的摩擦力恰好为零,求此时的角速度ω0

2)若小物块一直相对陶罐静止,求陶罐旋转的角速度的取值范围.

 

Copyright @ 2014 满分5 满分网 ManFen5.COM. All Rights Reserved.