(2006•盐城)将下面的直角梯形绕直线l旋转一周,可以得到右边立体图形的是( ) A. B. C. D. |
|
(2006•山西)观察下列实物模型,其形状是圆柱体的是( ) A. B. C. D. |
|
(2006•舟山)如图,长方体的面有( ) A.4个 B.5个 C.6个 D.7个 |
|
(2006•襄阳)下列说法正确的是( ) A.近似数2.340有四个效数字 B.多项式a2b-3b+1是二次三项式 C.42°角的余角等于58° D.一元二次方程x2-5=0没有实数根 |
|
(2006•南昌)一副三角板按如图的方式摆放,且∠α比∠β的度数大50°,若设∠α=x°,∠β=y°,则可得到的方程组为( ) A. B. C. D. |
|
(2006•芜湖)抛掷红、蓝两枚六面编号分别为1~6(整数)的质地均匀的正方体骰子,将红色和蓝色骰子正面朝上的编号分别作为二次函数y=x2+mx+n的一次项系数m和常数项n的值. (1)问这样可以得到多少个不同形式的二次函数?(只需写出结果) (2)请求出抛掷红、蓝骰子各一次,得到的二次函数图象顶点恰好在x轴上的概率是多少并说明理由. |
|
(2006•岳阳)如图,在菱形ABCD中,∠A=60°,AB=4,E是边AB上一动点,过点E作EF⊥AB交AD的延长线于点F,交BD于点M. (1)请判断△DMF的形状,并说明理由. (2)设EB=x,△DMF的面积为y,求y与x之间的函数关系式.并写出x的取值范围. |
|
(2006•安顺)如图,在平面直角坐标系xOy中,已知矩形OACB的边OA,OB分别在x轴上和y轴上,线段OA,OB的长分别是一元二次方程x2-18x+72=0的两个根,且OA>OB;点P从点O开始沿OA边匀速移动,点M从点B开始沿BO边匀速移动.如果点P,点M同时出发,它们移动的速度相同,设OP=x(0≤x≤6),设△POM的面积为y. (1)求y与x的函数关系式; (2)连接矩形的对角线AB,当x为何值时,以P,O,M为顶点的三角形与△AOB相似; (3)当△POM的面积最大时,将△POM沿PM所在直线翻折后得到△PDM,试判断D点是否在矩形的对角线AB上,请说明理由. |
|
(2006•巴中)已知:⊙P是边长为6的等边△ABC的外接圆,以过点A的直径所在直线为x轴,以BC所在直线为y轴建立平面直角坐标系,x轴与⊙P交于点D. (1)求A,B,D三点坐标. (2)求过A,B,D三点的抛物线的解析式. (3)⊙P的切线交x轴正半轴于点M,交y轴正半轴于点N,切点为点E,且∠NMO=30°,试判断直线MN是否过抛物线的顶点?并说明理由. |
|
(2006•巴中)如图,在平面直角坐标系中,以点0′(-2,-3)为圆心,5为半径的圆交x轴于A、B两点,过点B作⊙O′的切线,交y轴于点C,过点0′作x轴的垂线MN,垂足为D,一条抛物线(对称轴与y轴平行)经过A、B两点,且顶点在直线BC上. (1)求直线BC的解析式; (2)求抛物线的解析式; (3)设抛物线与y轴交于点P,在抛物线上是否存在一点Q,使四边形DBPQ为平行四边形?若存在,请求出点Q的坐标;若不存在,请说明理由. |
|