(2006•成都)如图,在平面直角坐标系中,已知点B(-2,0),A(m,0)(-<m<0),以AB为边在x轴下方作正方形ABCD,点E是线段OD与正方形ABCD的外接圆除点D以外的另一个交点,连接BE与AD相交于点F. (1)求证:BF=DO; (2)设直线l是△BDO的边BO的垂直平分线,且与BE相交于点G.若G是△BDO的外心,试求经过B、F、O三点的抛物线的解析表达式; (3)在(2)的条件下,在抛物线上是否存在点P,使该点关于直线BE的对称点在x轴上?若存在,求出所有这样的点的坐标;若不存在,请说明理由. |
|
(2006•达州)如图,抛物线y=-x2+bx+2交x轴于A、B两点(点B在点A的左侧),交y轴于点C,其对称轴为x=,O为坐标原点. (1)求A、B、C三点的坐标; (2)求证:∠ACB是直角; (3)抛物线上是否存在点P,使得∠APB为锐角?若存在,求出点P的横坐标的取值范围;若不存在,请说明理由. |
|
(2006•大连)如图,抛物线E:y=x2+4x+3交x轴于A、B两点,交y轴于M点,抛物线E关于y轴对称的抛物线F交x轴于C、D两点. (1)求F的解析式; (2)在x轴上方的抛物线F或E上是否存在一点N,使以A、C、N、M为顶点的四边形是平行四边形?若存在,求点N的坐标;若不存在,请说明理由; (3)若将抛物线E的解析式改为y=ax2+bx+c,试探索问题(2). |
|
(2006•大连)如图,点P(-m,m2)抛物线:y=x2上一点,将抛物线E沿x轴正方向平移2m个单位得到抛物线F,抛物线F的顶点为B,抛物线F交抛物线E于点A,点C是x轴上点B左侧一动点,点D是射线AB上一点,且∠ACD=∠POM.问△ACD能否为等腰三角形?若能,求点C的坐标;若不能,请说明理由. 说明: (1)如果你反复探索,没有解决问题,请写出探索过程(要求至少写3步); (2)在你完成(1)之后,可以从①、②中选取一个条件,完成解答(选取①得7分;选取②得10分).①m=1;②m=2. |
|
(2006•东营)如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发.以每秒1个单位的速度运动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点M作MP⊥OA,交AC于P,连接NP,已知动点运动了x秒. (1)P点的坐标为多少(用含x的代数式表示); (2)试求△NPC面积S的表达式,并求出面积S的最大值及相应的x值; (3)当x为何值时,△NPC是一个等腰三角形?简要说明理由. |
|
(2006•鄂尔多斯)如图,在△ABC中,AB=AC=5,以AB为直径的⊙P交BC于H.点A,B在x轴上,点H在y轴上,B点的坐标为(1,0). (1)求点A,H,C的坐标; (2)过H点作AC的垂线交AC于E,交x轴于F,求证:EF是⊙P的切线; (3)求经过A,O两点且顶点到x轴的距离等于4的抛物线解析式. |
|
(2006•鄂尔多斯)如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长交⊙P于C,过点C的直线y=2x+b交x轴于D,且⊙P的半径为,AB=4. (1)求点B,P,C的坐标; (2)求证:CD是⊙P的切线; (3)若二次函数y=-x2+(a+1)x+6的图象经过点B,求这个二次函数的解析式,并写出使二次函数值小于一次函数y=2x+b值的x的取值范围. |
|
(2006•鄂州)如图,直线y=-+8与x轴、y轴分别交于点A和B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处. (1)试确定直线AM的函数关系式; (2)求过A、B、M三点的抛物线的函数关系式. |
|
(2006•防城港)抛物线y=-x2+2bx-(2b-1)(b为常数)与x轴相交于A(x1,0),B(x2,0)(x2>x1>0)两点,设OA•OB=3(O为坐标系原点). (1)求抛物线的解析式; (2)设抛物线的顶点为C,抛物线的对称轴交x轴于点D,求证:点D是△ABC的外心; (3)在抛物线上是否存在点P,使S△ABP=1?若存在,求出点P的坐标;若不存在,请说明理由. |
|
(2006•防城港)在矩形ABCD中,AB=4,BC=2,以A为坐标原点,AB所在的直线为x轴,建立直角坐标系.然后将矩形ABCD绕点A逆时针旋转,使点B落在y轴的E点上,则C和D点依次落在第二象限的F点上和x轴的G点上(如图). (1)求经过B,E,G三点的二次函数解析式; (2)设直线EF与(1)的二次函数图象相交于另一点H,试求四边形EGBH的周长. (3)设P为(1)的二次函数图象上的一点,BP∥EG,求P点的坐标. |
|